
LOOK-AHEAD TECHNIQUES FOR
MICRO-OPPORTUNISTIC
JOB SHOP SCHEDULING

Norman Sadeh
March 1991

CMU-CS-91-102

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Copyright 1991 Sadeh

This research was supported, in part, by the Defense Advanced Research Projects
Agency under contract #F30602-88-C-0001, and in part by grants from McDonnell
Aircraft Company and Digital Equipment Corporation. The views and conclusions
contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, McDonnell Aircraft, or Digital Equipment Corporation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1991 2. REPORT TYPE

3. DATES COVERED
 00-00-1991 to 00-00-1991

4. TITLE AND SUBTITLE
Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsurgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Scheduling deals with the allocation of resources over time to perform a collection of tasks. Scheduling
problems arise in domains as diverse as manufacturing, computer processing, transportation, health care,
space exploration, education, etc. Scheduling problems are conveniently formulated as Constraint
Satisfaction Problems (CSPs) or Constrained Optimization Problems (COPs). A general paradigm for
solving CSPs and COPs relies on the use of backtrack search. Within this paradigm, the scheduling
problem is solved through the iterative selection of a subproblem and the tentative assignment of a solution
to that subproblem. Because most scheduling problems are NP-complete, even finding a solution that
simply satisfies the problem constraints could require exponential time in the worst case. This dissertation
demonstrates that the granularity of the subproblems selected by the backtrack search procedure critically
affects both the efficiency of the procedure and the quality of the resulting solution. A so-called
microopportunistic search procedure is developed, in which subproblems can be as small as a single
operation. Look-ahead techniques are presented that constantly track the evolution of so-called bottleneck
resources. These look-ahead techniques enable the scheduler to take advantage of the fine granularity of its
search procedure by opportunistically revising its scheduling strategy as bottlenecks shift from one part of
the problem space to another. More specifically, two variations of the job shop scheduling problem are
successively studied 1. The first variation is one in which operations have to be performed within
non-relaxable time windows. Heuristics to guide a micro-opportunistic scheduler are presented that are
shown to outperform both generic CSP heuristics as well as specialized heuristics developed for similar
scheduling problems. 2. The second part of this work deals with the factory scheduling problem. A
micro-opportunistic factory scheduler, called MICRO-BOSS, is described that explicitly accounts for both
tardiness and inventory costs. MICROBOSS is shown to outperform several competing scheduling
techniques. Experimental results also indicate that schedule quality deteriorates as the granularity of the
search procedure increases, thereby suggesting the superiority of a microopportunistic approach to job
shop scheduling over coarser search procedures such as those implemented in ISIS, OPT, and OPIS. They
also indicate that the ability of the micro-opportunistic approach to constantly revise its search strategy is
instrumental in efficiently solving problems in which some operations have to be performed within
nonrelaxable time windows.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

181

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

To my parents,
Denise and Leon,

and my wife, Patricia.

Acknowledgements

I would like to express my gratitude to the many people who helped make this

dissertation possible. In particular, I would like to thank:

My parents and my wife for their love and support throughout all these

years;

My advisor, Mark Fox, for his guidance, enthusiasm and unfailing support;

The other members of my thesis committee, Tom Mitchell, Tom Morton,

Judea Pearl, and Steve Smith, for many helpful comments on this research;

All present and past members of the CORTES project for many stimulating

discussions - Special thanks to Bob Frederking, who volunteered to

proofread parts of this dissertation;

All my friends and colleagues at the Center for Integrated Manufacturing

Decision Systems and in the School of Computer Science for having made

these past four years such a unique experience;

Les Gasser for his friendship and support during my earlier graduate life in

Los Angeles.

I would also like to acknowledge the financial support I received directly or indirectly

from DARPA, Digital Equipment Corporation, and McDonnell Douglas, while a student

at Carnegie Mellon, as well as the financial support of the Belgian American Educational

Foundation during my first year in the U.S..

Abstract
Scheduling deals with the allocation of resources over time to perform a collection of

tasks. Scheduling problems arise in domains as diverse as manufacturing, computer
processing, transportation, health care, space exploration, education, etc. Scheduling
problems are conveniently formulated as Constraint Satisfaction Problems (CSPs) or
Constrained Optimization Problems (COPs). A general paradigm for solving CSPs and
COPs relies on the use of backtrack search. Within this paradigm, the scheduling problem
is solved through the iterative selection of a subproblem and the tentative assignment of a
solution to that subproblem. Because most scheduling problems are NP-complete, even
finding a solution that simply satisfies the problem constraints could require exponential
time in the worst case. This dissertation demonstrates that the granularity of the
subproblems selected by the backtrack search procedure critically affects both the
efficiency of the procedure and the quality of the resulting solution. A so-called micro-
opportunistic search procedure is developed, in which subproblems can be as small as a
single operation. Look-ahead techniques are presented that constantly track the evolution
of so-called bottleneck resources. These look-ahead techniques enable the scheduler to
take advantage of the fine granularity of its search procedure by opportunistically
revising its scheduling strategy as bottlenecks shift from one part of the problem space to
another.

More specifically, two variations of the job shop scheduling problem are successively
studied:

1. The first variation is one in which operations have to be performed within
non-relaxable time windows. Heuristics to guide a micro-opportunistic
scheduler are presented that are shown to outperform both generic CSP
heuristics as well as specialized heuristics developed for similar scheduling
problems.

2. The second part of this work deals with the factory scheduling problem. A
micro-opportunistic factory scheduler, called MICRO-BOSS, is described
that explicitly accounts for both tardiness and inventory costs. MICRO-
BOSS is shown to outperform several competing scheduling techniques.

Experimental results also indicate that schedule quality deteriorates as the granularity of
the search procedure increases, thereby suggesting the superiority of a micro-
opportunistic approach to job shop scheduling over coarser search procedures such as
those implemented in ISIS, OPT, and OPIS. They also indicate that the ability of the
micro-opportunistic approach to constantly revise its search strategy is instrumental in
efficiently solving problems in which some operations have to be performed within non-
relaxable time windows.

1

Chapter 1

Introduction

1.1. Overview

This dissertation is concerned with dynamically revising a search procedure to focus on

the most critical decision points and the most promising decisions at these points.

Heuristics to redirect search are presented in the context of the job shop scheduling

domain that have yielded important increases in both search efficiency and schedule

quality over a variety of competing techniques.

Scheduling deals with the allocation of resources over time to perform a collection of

tasks [Baker 74, Rinnooy Kan 76, French 82]. Scheduling problems arise in many

domains. In the manufacturing domain, tasks, often referred to as jobs, correspond to

parts or batches of parts that need to be processed on a set of machines [Muth

63, Johnson 74, Graves 81, Silver 85, Rodammer 88]. In hospitals, tasks are patients and

resources are nurses, hospital beds or medical equipment required to treat the patients.

Scheduling problems arise in schools, where tasks are classes and resources can be

teachers, classrooms, and students [Feldman 89, Dhar 90]. Other examples include

transportation-related problems (e.g. troop transportation, airport terminal scheduling,

train scheduling [Fukumori 80], etc.), computer scheduling problems (e.g. CPU

scheduling [Peterson 85]), space telescope scheduling [Muscettola 89, Johnston 90],

appointment scheduling [Goldstein 75], etc.

Scheduling problems are conveniently formulated as either Constraint Satisfaction

Problems (CSPs) or Constrained Optimization Problems (COPs). A CSP is defined by a

set of variables and a set of constraints that restrict the values that can simultaneously be

assigned to these variables [Montanari 71, Mackworth 77, Dechter 88]. A COP is a CSP

with an objective function to be optimized subject to the problem constraints

[Papadimitriou 82, Nemhauser 88, Fox 89, Dechter 90]. A general paradigm for solving

CSPs and COPs relies on the use of backtrack search [Walker 60, Golomb 65, Bitner

N. SADEH

2 INTRODUCTION

75]. Within this paradigm, the scheduling problem is solved through the iterative

selection of a subproblem and the tentative assignment of a solution to that subproblem.

If in the process of building a solution, a partial solution is reached that cannot be

completed without violating a problem constraint, one or several earlier assignments need

to be undone. This process of undoing earlier assignments is called backtracking. It

deteriorates the efficiency of the search procedure, and hence increases the time required

to come up with a solution. Because of its mathematical structure [Garey 79], the general

version of the scheduling problem studied in this dissertation (known as the job shop

scheduling problem) can potentially require very large amounts of backtracking.

Traditionally, scheduling techniques have dealt with the backtracking issue by

transforming the mathematical structure of the problem, and allowing some constraints to

be relaxed as needed. This approach is commonly used in factory scheduling, where

rather than requiring that all jobs be completed by their due dates, job due dates are

relaxed as much as necessary in order to efficiently come up with a schedule. While

producing efficient scheduling procedures, this approach often results in fairly poor

solutions. In problems such as space telescope scheduling, where some due dates cannot

be relaxed (e.g. scheduling the operations required to take snapshots of an eclipse), this

approach simply does not work.

Instead, this dissertation investigates new scheduling techniques, which, short of

guaranteeing backtrack-free search, provide quality schedules while generally

maintaining search (i.e. backtracking) at a low level. Additionally, these techniques are

capable of dealing with scheduling problems in which constraints such as due dates are

not always relaxable. A key feature of the search techniques that will be discussed lies in

their ability to dynamically adapt during search. In the Artificial Intelligence (AI)

literature, this ability to dynamically revise the search procedure has been termed

opportunistic search [HayesRoth 79, Erman 80, Stefik 81a]. While earlier opportunistic

schedulers have relied on coarse problem decompositions, this work presents a so-called

micro-opportunistic scheduling approach that allows for much finer subproblems. It is

shown that the extra flexibility of a micro-opportunistic scheduling procedure can be

exploited to constantly redirect the scheduling effort towards those resources that are

likely to be the most difficult to schedule (so-called bottleneck resources). Look-ahead

techniques are described that help the micro-opportunistic scheduler identify critical

subproblems and promising solutions to these subproblems. These techniques are shown

to allow the micro-opportunistic scheduler to perform particularly well both with respect

to search efficiency and schedule quality.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

OVERVIEW 3

More specifically, two studies of the micro-opportunistic scheduling paradigm are

successively presented:

1. The first study is concerned with a variation of the generic Job Shop CSP,

in which operations have to be performed within non-relaxable time

windows (e.g. non-relaxable due dates and release dates). The study

indicates that often generic CSP heuristics are not sufficient to guide the

search for a solution to this problem. This is because these heuristics fail to

properly account for constraint tightness and for the connectivity of the

constraint graph. Instead, a probabilistic model of the search space is

introduced. New heuristics are developed based on this model, that are

shown to significantly speedup search.

2. The second part of this work deals with the factory scheduling problem.

This optimization problem allows us to simultaneously study both the

quality and efficiency performance of the micro-opportunistic approach. A

micro-opportunistic factory scheduling system, called MICRO-BOSS

(Micro-Bottleneck Scheduling System) is described that attempts to

simultaneously reduce both tardiness and inventory costs. A large scale

computational study indicates that the micro-opportunism embedded in

MICRO-BOSS enables the scheduler to outperform a variety of competing

scheduling techniques, both from Operations Research and Artificial

Intelligence, under a wide range of scheduling conditions. The study also

indicates that schedule quality deteriorates as the granularity of the

subproblems used in the search procedure increases, thereby suggesting the

superiority of a micro-opportunistic approach over coarser search

procedures such as those implemented in the ISIS [Fox 83], OPT [Goldratt

80, Jacobs 84, Fox 87], and OPIS [Smith 86a, Ow 88a] scheduling systems.

The balance of this introduction gives a more formal definition of the job shop

scheduling problem and reviews relevant work both in job shop scheduling and in

Constraint Satisfaction/Constrained Optimization.

N. SADEH

4 INTRODUCTION

1.2. The Job Shop Scheduling Problem

The job shop scheduling problem requires scheduling a set of jobs on a finite set of

resources. Each job is a request for the scheduling of a set of operations according to a

process plan (often referred to as process routing in the manufacturing domain) that

specifies a partial ordering among these operations. In order to be successfully

performed, each operation requires one or several resources (e.g. a machine, a human

operator, a set of fixtures), for each of which there may be several alternatives (e.g.

several machines of the same type). Operations are atomic: once started they cannot be

interrupted. In the simplest situation, each operation has a fixed duration, and each

resource can only process one operation at a time.

In manufacturing, jobs typically have release dates, before which they cannot start (e.g.

because the raw materials required to process a job are not scheduled to arrive before that

date) and due dates by which, ideally, they should be completed. These dates are

generally provided by a master scheduling module [Silver 85]. In make-to-order

environments, also referred to as open shops, due dates correspond to delivery dates of

customer orders. In make-to-stock environments, also referred to as closed shops, release

and due dates are artificially generated to reduce the complexity of the problem, prevent

the shop from being overflooded with inventory, and avoid stockouts (i.e. avoid running

out of finished-goods to meet customer demand).

Job shop scheduling is a Constraint Satisfaction Problem (CSP) or Constrained

Optimization Problem (COP). The variables of the problem are the operation start times,

and the resources assigned to each operation, when there is a choice. The constraints of

the problem include precedence constraints specified by the process routings and

capacity constraints that prevent resources from being allocated to more operations than

they can process at one time (resource capacity). Job release dates and due dates are

constraints that restrict the domains of acceptable operation start times. Additional

constraints may further restrict these domains such as constraints in factory scheduling

that require some operations to be performed over a single shift. Similar constraints are

often found in a variety of other scheduling problems, in which the domains of legal

operation start times can be made up of disjoint time intervals (e.g. [Muscettola 89]).

Figure 1-1 depicts a small job shop problem with four jobs. Each operation is
1represented by a box labeled by a triple consisting of the name of the operation (e.g. O),1

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

THE JOB SHOP SCHEDULING PROBLEM 5

3O1

3
R

5

2O1

5
R

4
2O 1

4
R

3
2O1

1
R

1
6O1

2
R

2
j

1

5O2

2
R

2
7O2

1
R

1
j

2

j
3

3O4

2
R

23O 4

1
R

4
j

4

precedence constraint

capacity constraint

3O3

3
2O

3

2
R

11O3

1
R

3
R

2

Figure 1-1: A simple job shop problem with 4 jobs. Each node
is labeled by the operation that it represents, its duration,

and the resource that it requires.

the duration of that operation (e.g. 2), and its resource requirement (e.g. R). The arrows1
1 1 1represent precedence constraints. For instance, job j requires 5 operations O , O ,..., O .1 2 51

1 1 1 1O has to be performed before O , O before O , etc. The other arcs in the graph1 2 2 4

represent capacity constraints. In this example, each resource is assumed to be capable of

processing only one operation at a time. A capacity constraint between two operations

expresses that these two operations cannot overlap in time. Clearly there is a capacity

constraint between each pair of operations that require the same resource (i.e. there is a

clique of capacity constraints for each resource). For instance, the clique for resource R2
1 2 3 4involves operations O , O , O and O . Typically, each job also has a release date and a2 2 3 2

due date, which are not represented in Figure 1-1.

N. SADEH

6 INTRODUCTION

In some scheduling problems, it is sufficient to come up with a solution that satisfies the

problem constraints (job shop CSP). Often however, not all solutions are equally

preferred. When this is the case, job shop scheduling becomes a COP with an objective

function to optimize. Different scheduling domains generally entail different scheduling

criteria. There exists however a small set of criteria that pervades the scheduling

literature. Because these metrics will be referred to later on in this work, they are now

briefly defined. A more complete set of scheduling metrics is described in [Rinnooy Kan

76] along with equivalence relations between them.

• Tardiness: Job tardiness is defined as the amount of time a job completes
1past its due date . The total (average) tardiness of a schedule is the total

(average) job tardiness in that schedule.

• Flowtime: Job flowtime is the time spent by a job in the shop while being

processed. It is the length of the time interval that spans from the release of

the job to its completion. The total (average) flowtime of a schedule is the

total (average) job flowtime in that schedule. In factory scheduling, average

job flowtime is an indicator of the time required to produce a part. A

schedule with a larger average flowtime will result, on the average, in more

parts sitting in the shop waiting to be completed. In other words, there will

be more in-process inventory (also referred to as work-in-process or work-

in-progress).

• Earliness: Job earliness is defined as the amount of time a job completes

before its due date. The total (average) earliness of a schedule is the total

(average) job earliness in that schedule. In factory scheduling problems

where parts completed before their due dates have to wait to be shipped,

average job earliness is a measure of finished-goods inventory.

1Job tardiness should not be confused with job lateness, which is negative when a job completes before
its due date. By definition the tardiness of a job completing before its due date is always zero.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

THE JOB SHOP SCHEDULING PROBLEM 7

• Makespan: The makespan of a scheduling problem is the length of the time

interval that spans from the start time of the first released job to the

completion time of the last completed job. This measure is appropriate in

project scheduling, where there is a finite number of jobs to be carried out.

In manufacturing domains, where new jobs arrive every day or every week,

it is more natural to speak in terms of throughput (i.e. the number of jobs

processed per unit of time) or in terms of resource utilization (i.e. the

fraction of its time that a resource is active). These three metrics are

equivalent in the sense that a reduction in the makespan of a schedule

produces a proportionate increase in throughput and resource utilization

[Rinnooy Kan 76].

There are many other possible ways to evaluate the quality of a schedule. In factory

scheduling, each of the measures defined above looks only at one important source of

costs in the production process. In Chapter 4, it will be argued that, instead of relying on

any one of these measures, one should attempt to simultaneously account for the different

costs hidden behind these measures. More formal definitions of the scheduling problems

studied in this thesis are provided at the beginning of Chapters 3 and 4.

The next section briefly reviews the state of the art in scheduling and CSP/COP.

1.3. Related Work

The first part of this section reviews the state of the art in job shop scheduling. Rather

than attempting to give a comprehensive survey of the field, the review focuses on a

couple of recent techniques closely related to the work presented in this dissertation. In

the process, the review attempts to point out shortcomings of these techniques and

motivates the micro-opportunistic approach investigated in this thesis. The second part of

the section summarizes relevant work in CSP/COP. Weaknesses of current CSP/COP

techniques are briefly identified that need to be remedied in order to successfully apply

the CSP/COP paradigm to real life problems such as job shop scheduling.

N. SADEH

8 INTRODUCTION

1.3.1. The State of the Art in Job Shop Scheduling

Job shop scheduling is an NP-hard problem [Garey 79, Lawler 82]. While

mathematical programming techniques developed in Operations Research have proved

particularly useful for aggregate planning [Lawrence 84], they are overwhelmed by the
2combinatorial number of discrete variables required to represent job shop scheduling

problems [Nemhauser 88]. More generally, with the exception of a couple of one-, two-,

and three-machine scheduling problems, for which there exist efficient algorithms

[Rinnooy Kan 76], all attempts to guarantee an optimal solution have failed.

Instead, job shop scheduling problems have traditionally been solved using priority

dispatch rules [Baker 74, Panwalkar 77, French 82]. These are local decision rules of the

greedy type that build schedules via a forward simulation of the shop. Because these

rules lack a global view of the shop, they usually build up large amounts of inventory in
3front of bottleneck resources .

More recently, with the advent of more powerful computers, a couple of more

sophisticated scheduling techniques have been developed [Goldratt 80, Fox 83, Ow

85, Adams 88, Ow 88a, Morton 88].

The first and by far most publicized of these techniques is the one developed by Eliyahu

Goldratt and his colleagues in the late seventies and early eighties within the context of
4the OPT factory scheduling system [Jacobs 84, Fox 87] . Among other things, this

system emphasized the need to distinguish between bottleneck and non-bottleneck

machines. In OPT, bottlenecks drive the entire schedule as they determine the throughput

of the plant. More specifically, a module called SERVE produces an initial infinite

capacity schedule by working backwards from the job due dates. This initial schedule

helps detect potential bottlenecks. The OPT module itself is then called upon to generate

a forward finite capacity schedule that optimizes the utilization of these bottlenecks. The

2A simple job shop problem with n jobs and m resources of unary capacity, in which each job needs to be
nprocessed by each of the m resources, produces m cliques of capacity constraints. Because these()2

capacity constraints are disjunctive, they each translate into a binary variable in a Mixed Integer
Programming model.

3Informally, a bottleneck is a resource whose utilization is expected to be close to or larger than its
available capacity.

4See also [Goldratt 86] for a lively description of the philosophy behind OPT.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

RELATED WORK 9

resulting bottleneck schedules are passed back to the SERVE module, which schedules

the non-bottleneck operations while trying to minimize inventory.

At about the same time, the ISIS factory scheduling system developed by Mark Fox and

his team first demonstrated the potential of AI modeling and heuristic search techniques

to help solve production scheduling problems [Fox 83, Smith 86b]. For the first time,

rather than relying on a simplified model of the shop, ISIS attempted to deal with the full

range of constraints and objectives encountered in the manufacturing domain.

Unfortunately, the overall performance of the system was somewhat mitigated by the

rigidity of its search procedure, which required jobs to be scheduled one by one (so-

called job-centered approach). While this search procedure was particularly efficient at

reducing inventory, it had problems optimizing utilization of bottleneck resources. As a

result, a new system, called OPIS, was developed by Steve Smith, Peng Si Ow, and their

colleagues [Smith 86a, Smith 86b, Ow 88a]. In OPIS, the notion of bottleneck resource

was pushed one step further, as it was recognized that new bottlenecks can appear during

the construction of the schedule. The OPIS scheduler combines two scheduling

perspectives: a resource-centered perspective for scheduling bottleneck resources, and a

job-centered perspective to schedule non-bottleneck operations on a job by job basis.

Rather than relying on its initial bottleneck analysis, OPIS typically repeats this analysis

each time a resource or a job has been scheduled. This ability to detect the emergence of

new bottlenecks during the construction of the schedule and revise the current scheduling

strategy has been termed opportunistic scheduling [Ow 88a]. Nevertheless, the

opportunism in this approach remains limited in the sense that it typically requires

scheduling an entire bottleneck (or at least a large chunk of it) before being able to switch

to another one. For this reason, such scheduling techniques should in fact be called

macro-opportunistic.

In reality, bottlenecks do not necessarily span over the entire scheduling horizon.

Moreover they tend to shift before being entirely scheduled. A scheduler that can only

schedule entire resources will not be able to take advantage of these considerations. Often

it will overconstrain its set of alternatives before having worked on the subproblems that

will most critically determine the quality of the entire schedule. This in turn will often

result in poorer solutions. A more flexible approach would allow to quit scheduling a

resource as soon as another resource is identified as being more constraining. In fact, in

the presence of multiple bottlenecks, one can imagine a technique that constantly shifts

attention from one bottleneck to another rather than focusing on the optimization of a

N. SADEH

10 INTRODUCTION

single bottleneck at the expense of others. For these reasons, it seems desirable to

investigate a more flexible approach to scheduling, or a micro-opportunistic approach, in

which the evolution of bottlenecks is continuously monitored during the construction of

the schedule, and the problem solving effort constantly redirected towards the most

serious bottleneck. In its simplest form, this micro-opportunistic approach results in an

operation-centered view of scheduling, in which each operation is considered an

independent decision point and can be scheduled without requiring that other operations

using the same resource or belonging to the same job be scheduled at the same time. This

is the approach adopted in this thesis.

An alternative approach for dealing with the emergence of new bottlenecks has been

recently proposed by Adams, Balas and Zawack [Adams 88] (See also [Dauzere-Peres

90]). This approach, known as the Shifting Bottleneck Procedure (SBP), sequences

resources one by one, while continuously reoptimizing the schedule of resources

sequenced earlier. SBP has allowed for the production of schedules with near-optimal

makespan for problems with up to 500 operations. Attempts to generalize the procedure

to account for due dates and more complex objectives seem to have been less successful

so far [Serafini 88]. It should be pointed out that the idea of continuously reoptimizing
5the current partial schedule is not incompatible with the micro-opportunistic approach .

The SCHED-STAR scheduling module developed by Morton, Lawrence, Rajagopolan

and Kekre takes yet another approach to dealing with bottleneck resources [Morton 88].

Rather than relying on a simplified objective function, this price-based factory scheduler

accounts directly for both tardiness and inventory costs in order to minimize the net

present value of cash flows in the plant. Based on these exogenous costs, implicit

resource prices are derived via internal simulation that reflect resource contention in

function of time. These prices are used to determine job releases and attribute priorities

to competing jobs at each machine. The MICRO-BOSS factory scheduling system

described in Chapter 4 also uses tardiness and inventory costs to help identify bottleneck

resources. The design of SCHED-STAR prevents however the system to take full

advantage of its bottleneck analysis. In particular, the system builds schedules via a

forward simulation of the shop. As a result, release decisions are always made before

5By only scheduling those operations that appear to be most critical, a micro-opportunistic approach
should in fact allow for more effective reoptimization procedures.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

RELATED WORK 11

6bottleneck sequencing decisions. This is contrary to the lessons taught by OPT .

SCHED-STAR makes up for this potential weakness by iterating its simulation, using its

previous schedule to derive new resource prices and generate new schedules. It is not

clear how effective this iterative approach can be and how dependent it is on the ability to

guess a good initial schedule.

The main purpose of this brief review was to emphasize the need for a micro-

opportunistic scheduling approach in order to produce better schedules. As will be

demonstrated in this thesis, the extra flexibility of the micro-opportunistic search

procedure advocated here, not only helps produce better schedules but also enables a

scheduling system to deal more effectively with operations that need to be performed

within non-relaxable time windows (e.g. non-relaxable release dates and due date

constraints).

More comprehensive reviews of the job-shop scheduling literature can be found in

[Baker 74, Rinnooy Kan 76, French 82, Lawler 82]. For recent surveys of the

production scheduling literature, the reader is referred to [Graves 81] and [Rodammer

88]. Conventional approaches to production planning and scheduling are discussed at

length in [Johnson 74, Hax 84, Silver 85].

The second part of this review deals with earlier work in CSP/COP. It includes

references to other applications of the CSP paradigm to job shop scheduling problems.

1.3.2. Relevant Work in CSP/COP

The general CSP is NP-complete [Garey 79]. Techniques for solving the general CSP

extend the depth-first backtrack search procedure [Walker 60, Golomb 65, Bitner

75, Pearl 84], in which a solution is incrementally built by instantiating one variable (or

more generally one subproblem) after another. Every time a variable is instantiated, a

new search state is created, where new constraints are added to account for the value

assigned to that variable. If a partial solution is built that cannot be completed, the

current search state is said to be a deadend. The system needs to backtrack to an earlier

less complete solution, and try alternative variable assignments. Search typically stops

6Indeed, by first sequencing bottleneck machines, systems like OPT determine how much can be
produced by the plant. Bottleneck schedules are then used to determine when to release jobs without
starving the bottleneck and without building excess inventory.

N. SADEH

12 INTRODUCTION

when a first solution has been found, or when all alternatives have been tried without

success. In the latter case, the CSP is said to be infeasible.

Because the general CSP is NP-complete, backtrack search may require exponential

time in the worst case. Research in CSP has produced four types of techniques that can

help improve the average efficiency of the basic backtrack search procedure [Dechter

91]:

1. Consistency Enforcing (Checking) Techniques: These techniques are meant

to prune the search space by eliminating local inconsistencies that cannot

participate in a global solution [Mackworth 85]. This is done by inferring

new constraints and adding them to the current problem formulation. If

during this process the domain of a variable becomes empty, a deadend

situation has been identified. Consistency enforcing techniques can be

applied either before or during search. In general, achieving higher levels

of consistency reduces backtracking. There is however a tradeoff [Haralick

80, Mackworth 85, Nadel 88] between the amount of computation spent

enforcing consistency and the savings achieved in the actual search. Partial

consistency enforcing algorithms have been classified according to the

degree of consistency that they achieve between variables. In particular,

consistency enforcing algorithms that achieve consistency among subsets of

k variables are said to enforce k-consistency [Freuder 82]. In general

k-consistency algorithms have a complexity exponential in k.

2. Variable and Value Ordering Heuristics: These heuristics are concerned

with the order in which variables are instantiated and values assigned to

each variable. A good variable ordering is one that starts with the variables

that are the most difficult to instantiate. By first instantiating these critical

variables, one hopes to avoid wasting a lot of time building partial solutions

that cannot be completed. A good value ordering heuristic is one that

leaves open as many options as possible to the remaining uninstantiated

variables (i.e. a so-called least constraining value ordering heuristic). These

heuristics are meant to reduce the chances of backtracking and its cost,

when it cannot be avoided. Both theoretical and experimental studies show

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

RELATED WORK 13

that variable and value ordering heuristics can significantly reduce search

[Haralick 80, Purdom 83, Stone 86, Dechter 88, Zabih 88, Dechter

89a, Fox 89].

3. Deadend Recovery Techniques: These techniques help decide which earlier

assignments to undo in order to recover from a deadend. The simplest such

strategy is known as chronological backtracking. It consists in undoing the

last assignment, and trying another one (if there is one left). More

sophisticated deadend recovery strategies have been designed that attempt

to go back to the source of failure and undo one or several of the

assignments that prevent the current partial solution from being

successfully completed [Stallman 77, Doyle 79, Gaschnig 79, Dechter 89b].

Techniques have also been developed that attempt to "learn" from deadends

by abstracting from these situations a set of partial assignments that are
7inconsistent and should therefore be avoided in the future [Dechter 89b].

4. Hierarchical Reformulation Techniques: These are techniques to

automatically define abstractions in a CSP. If carefully chosen, such

abstractions have been known to significantly reduce search [Sacerdoti

74, Sussman 80, Stefik 81b, Fox 86]. With the exception of [Dechter

89c, Knoblock 91], very little formal work has been done in this area.

At the time this research started, a good deal of experimental results reported in the CSP
8literature had been obtained on toy problems such as N-queens . The problems used in

these experiments generally involved 10 to 20 variables, each with at most 10 to 20

values. How the CSP paradigm would scale up on harder and larger problems such as job

shop scheduling remained an open issue. This thesis demonstrates that while the CSP

paradigm itself scales up pretty well, the particular heuristics that have been proposed so

far in the literature are often too weak to produce good results. Chapter 3 points to the

7This last technique can also be seen as a form of dynamic consistency enforcement.

8The N-queens problem requires positioning N queens on an N × N chess board so that they cannot
attack each other according to chess rules [Kraitchick 42]. This problem is not NP-hard [Yaglom
64, Abramson 89].

N. SADEH

14 INTRODUCTION

shortcomings of popular variable and value ordering heuristics. A new probabilistic

model is also introduced that allows for the definition of more powerful variable and

value orderings. This model was influenced by the work of Bernard Nadel [Nudel

83, Nadel 86a, Nadel 86b, Nadel 86c], who himself generalized a probabilistic model

introduced earlier by Haralick and Elliott [Haralick 80]. In his work, Nadel identified a

small set of measures that he used to select between alternative search orderings based on

complexity estimates. A key measure in Nadel’s work is that of constraint satisfiability,

namely the number of ways in which a constraint can be satisfied. The probabilistic

estimates developed by Nadel solely account for these constraint satisfiabilities and the
9ways in which constraints in a problem are connected to each other . It seems however

that, in hard problems like job-shop scheduling, measures of constraint satisfiability are

not sufficient. The difficulty in satisfying a constraint, which will from now on be

referred to as the tightness of that constraint, critically depends on the specific ways in

which that constraint interacts with other problem constraints, i.e. the tightness of a

constraint is generally determined by the specific pairs of values allowed by that

constraint and the other interacting constraints. For instance, in job shop scheduling,

interactions between precedence constraints can be very different from interactions

between capacity constraints, even if these constraints form similar constraint graphs and

have similar satisfiabilities.

Recently several applications of CSP techniques to job shop scheduling problems have

been reported in the literature [Collinot 88, LePape 88, Dincbas 88, Keng 89, Burke

89, Prosser 89, Elleby 89, Johnston 90, Badie 90, Minton 90]. Of particular relevance to

this dissertation is the work of Naiping Keng [Keng 89], who developed a pair of variable

and value ordering heuristics that attempts to account for interactions between capacity

constraints. His heuristics are described in more detail in Chapter 3. Experimental results

are also presented indicating that, although more powerful than generic CSP heuristics,

Keng’s heuristics still fail to account for some important constraint interactions.

Recently, Minton proposed a so-called repair heuristic approach to job-shop scheduling

[Minton 90]. Within this approach, each variable is initially assigned a tentative value.

This initial assignment is then refined in order to get rid of all constraint violations. The

repair heuristic suggests to first work on the variable whose current tentative assignment

9The term "connected" refers to a graphical representation of a CSP with binary constraints, known as
the constraint graph of the problem. In a constraint graph, each variable is represented by a node, and
binary constraints are represented by arcs between two nodes.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

RELATED WORK 15

violates the largest number of constraints, and to replace this assignment with one that

minimizes the number of remaining conflicts. While this technique has performed

particularly well on the N-queens problem, its performance on more difficult problems,

such as job-shop scheduling, remains to be assessed. A potential drawback of Minton’s

technique is its reliance on a single tentative assignment to identify critical variables and

promising values for these variables. Indeed, partial solutions produced by the procedure

may in fact bear little resemblance to earlier tentative assignments. As a consequence,

the look-ahead provided by the repair heuristic will generally be limited to a couple of

search states, rather than applying to the entire problem.

So far very little work has been done to extend the CSP paradigm to deal with
10optimization problems . While mathematical programming techniques, both continuous

and discrete, have provided elegant solutions to many COPs, there remain problems on

which these techniques have had very little impact so far. As pointed out earlier, job shop

scheduling belongs to this class of more difficult problems. The work reported in

Chapters 4 and 5, within the context of the MICRO-BOSS factory scheduler, indicates

that the CSP paradigm can sometimes provide a viable alternative to traditional Mixed

Integer Programming techniques.

Extending the CSP approach to deal with optimization problems is far from trivial.

Good variable and value ordering heuristics to find a feasible solution will often perform

poorly in the presence of an objective function. Earlier experiments reported in [Sadeh

89a, Sadeh 90], in the context of job shop scheduling problems, indicate that, although

particularly effective to reduce search, least constraining value ordering heuristics, such

as those advocated by Keng [Keng 89], tend to produce poor solutions. Looking for a

good solution generally requires more constraining value orderings, and may therefore

result in more backtracking. This will generally require more powerful consistency

enforcing mechanisms (see Chapter 2), and variable ordering heuristics that account for

the bias of the value ordering heuristic towards the selection of better values (see Chapter

4).

10An exception is the work of Rina Dechter, Avi Dechter, and Judea Pearl who identified a class of
COPs with acyclic constraint graphs that can be solved to optimality in polynomial time using a dynamic
programming technique [Dechter 90].

N. SADEH

16 INTRODUCTION

1.4. Summary of Contributions

The main contributions of this dissertation can be summarized as follows:

• A Micro-opportunistic Approach to Job Shop Scheduling: While earlier

schedulers such as OPT, ISIS, and OPIS have relied on coarse problem

decompositions, this dissertation presents a micro-opportunistic approach to

job shop scheduling that allows for much finer subproblems. It is shown that

the extra flexibility of this approach can be exploited to constantly redirect

the scheduling effort towards those bottleneck operations that appear to be

the most critical. Experimental results indicate that the ability of the micro-

opportunistic approach to constantly revise its search procedure allows for

significant increases in schedule quality and is instrumental in efficiently

solving problems in which some operations have to be performed within

non-relaxable time windows (e.g. non-relaxable release and due dates).

• Application of the CSP Paradigm to Job Shop Scheduling/A Probabilistic

Model of the Search Space: This thesis demonstrates that, while the CSP

paradigm (i.e. combining consistency enforcing techniques with variable and

value ordering heuristics) scales up to larger and harder problems such as job

shop scheduling, the particular heuristics that had been proposed earlier are

not sufficient for problems such as job shop scheduling. This is because

these heuristics fail to properly account for constraint tightness and for the

connectivity of the constraint graph. Instead, a new probabilistic model of

the search space is defined that allows for the definition of more powerful

variable and value ordering heuristics. These heuristics have allowed for the

solution of scheduling problems with non-relaxable time windows that could

not be solved efficiently by prior techniques.

• Extension of the CSP Paradigm to deal with COPs: This dissertation also

extends the CSP paradigm to deal with job shop scheduling as an

optimization problem. While least constraining value ordering heuristics

used to solve CSPs are particularly good at reducing backtracking, they

typically fail to provide good solutions. Instead, more constraining value

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SUMMARY OF CONTRIBUTIONS 17

ordering heuristics are required. This in turn requires the use of stronger

consistency enforcing mechanisms and more accurate variable ordering

heuristics in order to maintain backtracking at a low level. This thesis

describes such mechanisms within the framework of the job shop scheduling

problem. In particular, a new variable ordering heuristic is described that

identifies critical operations as those involved in important tradeoffs. The

resulting scheduler implements a two-step optimization procedure. In the

first step, reservation assignments are optimized within each jobs, and

critical operations are identified as those whose good reservations conflict

most with the good reservations of other operations. Reservations for the

critical operations are then ranked according to their ability to minimize the

costs incurred by the operation itself and the operations with which it

competes.

• The MICRO-BOSS Factory Scheduling System: One of the most tangible

contribution of this thesis is certainly the MICRO-BOSS factory scheduling

system itself, which is able to deal explicitly with tardiness costs, in-process

inventory costs, and finished-goods inventory costs. This system has

outperformed a variety of competing scheduling techniques under a wide

range of scheduling conditions. MICRO-BOSS introduces the notion of

bottleneck operation, which is directly formalized in terms of tardiness and

inventory costs and accounts for earlier scheduling decisions.

A more complete summary of contributions is provided in Chapter 6.

1.5. Thesis Outline

Chapter 2 describes the micro-opportunistic search procedure studied in this dissertation

with a special emphasis on consistency enforcing mechanisms. Chapter 3 deals with a

generic version of the job shop CSP, in which operations may require several resources

for which there can be alternatives, and some operations have to be performed within one

or several non-relaxable time windows. The chapter starts by reviewing some popular

variable and value ordering heuristics, and explains why these heuristics typically fail

when applied to job shop scheduling. A probabilistic model of the search space is then

N. SADEH

18 INTRODUCTION

introduced that allows for the definition of more powerful variable and value ordering

heuristics. Experimental results presented at the end of this chapter demonstrate that

these new variable and value ordering heuristics outperform a variety of other CSP

heuristics (both generic heuristics and specialized CSP heuristics designed for job shop

scheduling). Chapter 4 deals with job shop scheduling as a COP. This chapter presents

the look-ahead techniques developed within the context of the MICRO-BOSS factory

scheduler to help the system decide which operation to schedule next and which

reservation to assign to that operation. Several experimental studies are reported in

Chapter 5 that demonstrate the superiority of MICRO-BOSS over both traditional priority

dispatch rules and coarser opportunistic scheduling techniques. Chapter 6 concludes this

dissertation with a set of final remarks.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

19

Chapter 2

The Micro-opportunistic Search Procedure

2.1. Overview

In the micro-opportunistic (or operation-centered) approach studied in this dissertation,

each operation is considered an independent decision point. Any operation can be

scheduled at any time, if deemed appropriate by the scheduler. There is no obligation to

simultaneously schedule other operations upstream or downstream within the same job,

nor is there any obligation to schedule other operations competing for the same resource.

The micro-opportunistic scheduler proceeds according to the generic backtrack search

procedure by iteratively selecting an operation to be scheduled and a reservation to be

assigned to that operation (i.e. a start time and a specific resource for each resource

requirement for which there are several alternatives). Every time an operation is

scheduled, a new search state is created, where new constraints are added to account for

the reservation assigned to that operation. If an unscheduled operation is found to have

no possible reservations left, a deadend state has been reached: the system needs to

backtrack (i.e. it needs to undo some earlier reservation assignments in order to be able to

complete the schedule). If the search state does not appear to be a deadend, the scheduler

moves on and looks for a new operation to schedule and a reservation to assign to that

operation. This process goes on until all operations have been scheduled, or until the

scheduling problem has been found to be infeasible.

Because job shop scheduling is NP-complete, this procedure could require exponential

time in the worst case. In practice, as demonstrated by the experimental studies

presented in this thesis, it is generally possible to maintain the average complexity of the

procedure at a very low level while producing quality schedules. This is achieved by

interleaving search with the application of consistency enforcing techniques and a set of

look-ahead techniques that help decide which operation to schedule next (so-called

variable ordering heuristic) and which reservation to assign to that operation (so-called

value ordering heuristic).

N. SADEH

20 THE MICRO-OPPORTUNISTIC SEARCH PROCEDURE

1. Consistency Enforcement: Consistency enforcing techniques are used to

prune possible reservations (of unscheduled operations) that have become

unavailable due to earlier reservation assignments. By constantly inferring

new constraints resulting from earlier scheduling decisions, these

techniques reduce the chance of selecting reservation assignments that are

inconsistent with earlier scheduling decisions. This reduces the chances of

backtracking. Additionally, by allowing for the early detection of deadend

states, these techniques limit the amount of work wasted in the exploration

of fruitless alternatives. In other words these techniques reduce both the

frequency and the amount of backtracking.

2. Look-ahead Analysis: The purpose of the look-ahead analysis is to help

identify critical operations and promising reservations for these operations.

Operation criticality and reservation goodness are measures that are not

intrinsic to a problem. They depend on earlier scheduling decisions (i.e.

they change from one search state to another), and on the objective to be

optimized. In this dissertation, two variations of the job shop scheduling

problem are successively studied, one in which the only concern is to come

up with a feasible solution as fast as possible (job shop CSP), and one in

which the objective is to efficiently come up with as good a solution as

possible (job shop COP). In the job shop CSP, a critical operation is one

whose reservations are likely to become unavailable if other operations

were scheduled first. By scheduling these operations first, the scheduler

avoids building partial schedules that it will not be able to complete later

on. Similarly a good reservation, in the job shop CSP, is one that leaves

enough room to other unscheduled operations so that the schedule can be

completed with minimal backtracking. In the case of the job shop COP, the

notions of operation criticality and reservation goodness appear to be more

complex. This dissertation suggests that, in COPs, critical variables (e.g.

critical operations in job shop scheduling) are variables participating in

important tradeoffs and promising values for these variables are values

that optimize these tradeoffs. An important tradeoff is one that critically

impacts the quality of the entire solution. By first optimizing the most

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

OVERVIEW 21

important tradeoffs in a problem, the system can later use the solutions to

these tradeoffs to help solve the remainder of the problem. Indeed, once

critical tradeoffs have been worked out, the remainder of the problem tends

to become more decoupled, and hence easier to optimize. Chances of

backtracking tend to simultaneously subside as well. A system, that does

not attempt to work out critical tradeoffs first, runs the risk

overconstraining its set of alternatives before having worked on the

subproblems that will impact most the quality of the entire solution.

This thesis describes a unifying framework in which measures of

reservation reliance (i.e. the reliance of an operation on the availability of

a reservation) and resource contention are computed to identify critical

operations and promising reservations for these operations. This framework

is applied to both the CSP and COP versions of the job shop scheduling

problem studied in this dissertation. In job shop CSPs, the reliance of an

operation on the availability of a specific reservation (in a search state) is

defined as a function of the number of alternative reservations still available

to that operation (in that search state). Operations with a small number of

alternative reservations left are said to rely more on each one of their

remaining possible reservations. In job shop COPs, the reliance of an

operation on a reservation is defined as a function of the expected merit of

assigning that reservation to the operation compared to the merit of

alternative reservations still available to the operation, and compared to

differences in merit between the reservations still available to other

operations. In other words, operations with only a small fraction of their

remaining reservations expected to result in a high value of the objective

are said to highly rely on this small fraction of good reservations. Once

reservation reliance has been evaluated, critical resource/time intervals are

identified as highly relied upon resource/time intervals, and critical

operations as those that most heavily rely on the availability of these critical

resource/time intervals. While measures of reservation reliance depend on

whether the scheduling problem is a CSP or a COP, the procedure used to

measure resource contention and identify critical operations remains the

same.

N. SADEH

22 THE MICRO-OPPORTUNISTIC SEARCH PROCEDURE

The next section gives a more formal description of the top-level procedure embedded

in the micro-opportunistic approach.

2.2. The Search Procedure

Concretely, the micro-opportunistic search procedure starts in a search state in which no

operation has been scheduled yet, and proceeds according to the following steps:

1. If all operations have been scheduled then stop, else go on to 2;

2. Apply the consistency enforcing procedure;

3. If a deadend is detected then backtrack (i.e. select an alternative if there is

one left and go back to 1, else stop and report that the problem is

infeasible), else go on to step 4;

4. Perform the look-ahead analysis: evaluate the reliance of each

unscheduled operation on the availability of its remaining possible

reservations, and measure resource contention over time;

5. Select the next operation to be scheduled (so-called operation ordering

heuristic): select the operation that relies most on the most contended (i.e.

most highly relied upon) resource/time interval;

6. Select a promising reservation for that operation (so-called reservation

ordering heuristic)

7. Create a new search state by adding the new reservation assignment to the

current partial schedule. Go back to 1.

In this search procedure, the so-called opportunistic behavior results from the ability of

the scheduler to constantly revise its search strategy and redirect its effort towards the

scheduling of the operation that appears to be the most critical in the current search

state. This degree of opportunism differs from that displayed by other approaches where

the scheduling entity is an entire resource or an entire job [Ow 88a], i.e. where an entire

resource (or at least a large chunk of it) or an entire job (or at least a large portion of it)

needs to be scheduled before the scheduler is allowed to revise its current scheduling

strategy.

The results reported in this dissertation were obtained using a simple chronological

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

THE SEARCH PROCEDURE 23

backtracking scheme. The remainder of this section gives a more detailed description of

the consistency enforcing procedure.

2.3. Enforcing Consistency

Clearly there is a tradeoff between the time spent enforcing consistency in each search

state and the actual savings achieved in search time. Furthermore, because job shop

scheduling is NP-complete, a consistency enforcing mechanism that would immediately

detect all deadend states (i.e. all partial schedules that cannot be completed) is likely to

require exponential time. Overall, it is usually a better idea to try to catch certain types of

deadend states that are easy to detect. Deadend states that are not directly caught by the

consistency enforcing mechanism require some amount of search to be identified: in the

process of attempting to complete the partial schedule of such hard-to-detect deadend

states, the scheduler eventually reaches deadend states that are easier to recognize, and

backtracks. After having exhaustively tried all possible ways in which to complete the

partial schedule of a hard-to-detect deadend state, the scheduler backs up to that state,

and labels it as a deadend. By always instantiating operations that are difficult to

schedule, the scheduler is able to greatly reduce the amount of search necessary to detect

these more difficult deadend states. Indeed, by instantiating difficult variables (i.e. highly

constraining variables) in a hard-to-detect deadend state, the scheduler creates a new

deadend state that is even more constrained, and hence easier to detect.

Both theoretical and empirical studies [Montanari 71, Haralick 80, Nudel

83, Mackworth 85, Dechter 88, Dechter 89a, Nadel 88] indicate that, by and large, it is

not a good idea to seek very high levels of consistency in a search state. Simply achieving

2-consistency (also referred to as arc-consistency [Waltz 75, Mackworth 77]) levels in a

forward checking [Haralick 80] fashion often appears to be a good tradeoff. A binary

constraint (i.e. "arc") restricting two variables is said to be arc consistent when the sets of

remaining possible values of both variables are such that any value in the set of one

variable is supported by/compatible with at least one value in the set of the other.

Achieving arc consistency with respect to a binary constraint requires pruning all values

that do not meet this condition. In general, for two variables with k possible values each,
2this requires at most O(k) consistency checks. A search state is said to be totally arc-

consistent if all its constraints have been made arc consistent. Forward checking is a form

of partial arc-consistency [McGregor 79, Haralick 80]. It only requires achieving arc-

consistency with respect to binary constraints connecting non-instantiated variables to

N. SADEH

24 THE MICRO-OPPORTUNISTIC SEARCH PROCEDURE

instantiated ones. Forward checking does not attempt to achieve arc-consistency between

non-instantiated variables.

In job shop scheduling problems, it is possible to achieve complete arc consistency with

respect to precedence constraints in O(α) time, where α is the number of precedence

constraints in the problem [Tarjan 83a]. As in PERT/CPM [Johnson 74], this is done

using a longest path algorithm that takes advantage of the acyclicity of the precedence

graph to produce an efficient order in which to update pairs of earliest/latest possible start
11times for each unscheduled operation . It turns out that this method actually guarantees

12decomposability [Davis 87, Dechter 89d]. Hence, in the absence of capacity constraints

(e.g. problems in which no two operations require the same resource), updating pairs of

earliest/latest possible start times for each unscheduled operation in each search state is

sufficient to guarantee backtrack-free search.

Enforcing consistency with respect to capacity constraints appears to be more difficult

due to the disjunctive nature of these constraints. For these constraints, a forward

checking type of consistency enforcement is carried out with respect to capacity

constraints [LePape 87]. In other words, whenever a resource is allocated to an operation

over some time interval, this procedure marks that time interval as unavailable to all other

operations requiring that same resource.

Because this technique achieves only partial consistency with respect to capacity

constraints, it is not possible to guarantee backtrack-free search. Sometimes the

scheduler reaches a search state, in which several unscheduled operations competing for a

resource appear to each have some possible reservations left, while the total capacity

available on the resource is actually insufficient to accommodate all these operations

together. In order to catch some of these situations more rapidly, it was found useful to

add a set of redundant binary constraints to the problem formulation. These constraints
k lexpress that, if two operations, O and O , require the same resource and are constrainedi j

in such a way that they each totally rely on the availability of some time interval on that

11See also [Smith 83] for an incremental version of this procedure, as new operations are scheduled.

12A constraint network is said to be decomposable iff every assignment of values to any subset of K
variables that satisfies all the constraints among these K variables can be extended by an assignment of a
value to any variable not in the subset, in such a way that the resulting set of K + 1 assignments satisfies all
the constraints among the K + 1 variables [Dechter 89d]. Decomposability is sufficient to ensure backtrack-
free search.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

ENFORCING CONSISTENCY 25

resource’s calendar (even though they may still have several possible start times left),
kthen these two time intervals cannot overlap. Let R denote the p-th resource required byip

k l l k k kO and R the q-th resource required by O . Let also est , lst and du respectively denotei jq j i i i
k l lthe earliest possible start time, latest possible start time, and duration of O , and est , lsti j j

l l k land du denote those of O . The binary constraint between two operations, O and O , canj j i j

then be formulated as:

k l k k k l l l(∀p ∀qR ≠ R) ∨ (lst ≥ est + du) ∨ (lst ≥ est + du)ip jq i i i j j j

l k k k l l∨ (lst ≥ est + du) ∨ (lst ≥ est + du)j i i i j j

k lFigure 2-1 illustrates a simple situation where two operations O and O violate one suchi j
k lconstraint. Both operations are assumed to require the same resource, say R= R = R .i1 j1

l l l l l l left = est + du is O ’s earliest possible finish time, and lft = lst + du its latest possiblej j j j j j j
k k kfinish time. Similarly eft is O ’s earliest possible finish time, and lft its latest possiblei i i

l l lfinish time. Whichever start time is assigned to O , O will need resource R between lstj j j
l l l kand eft (this would not be the case if lst ≥ eft). Similarly O will need that samej j j i

k k l lresource between lst and eft . In Figure 2-1, these two time intervals, namely [lst , eft [i i j j
k kand [lst , eft [, overlap. This indicates that the resource is oversubscribed: a deadend statei i

has been detected.

These types of conflicts can be efficiently avoided by maintaining for each resource a

calendar (e.g. a bit vector) that records each of the time intervals on which an

unscheduled operation totally relies (a similar but separate calendar is used to keep track

of actual reservations). As soon as two operations totally rely on overlapping
13resource/time intervals, a deadend state is detected .

Clearly there remain more complex deadend situations that will not be immediately

caught by the consistency checking mechanism just described. These deadends are the

ones that will produce backtracking. In practice, it has been our experience, that the

13Notice that this is not equivalent to achieving full arc-consistency. Full arc-consistency would require
pruning all start times that have become unavailable due to unscheduled operations that totally rely on the
availability of some resource/time intervals. This would require a more complex procedure in which some
operations may have to be inspected several times: as their earliest/latest possible start time intervals
shrink, new operations may start to totally rely on the availability of some resource/time intervals, or
operations that already relied totally on some resource/time intervals may see these intervals grow longer.
This in turn may affect the earliest and/or latest possible start times of other operations, and so on.
Although these computations can still be performed efficiently, it is not clear whether, on the average, this
would reduce total processing time.

N. SADEH

26 THE MICRO-OPPORTUNISTIC SEARCH PROCEDURE

Okkkk

iiii

O llll

jjjj

timeest eftlst lftest eftlst lft

oversubscribed
interval

jjjj

llllllll

jjjj

llll

jjjj

llll

jjjjiiii

kkkk kkkk

iiii

kkkk

iiii

kkkk

iiii

earliest possible reservation

latest possible reservation

interval of total reliance

Figure 2-1: A situation with an oversubscribed resource that can easily be
detected.

consistency enforcing techniques described in this section generally provide a good

compromise between the amount of consistency enforcement performed in each search

state and the amount of backtracking resulting from the deadends that are not

immediately detected. This is because the micro-opportunistic approach does not rely

solely on these consistency enforcing techniques to maintain backtracking at a low level.

Instead, the approach also relies on powerful look-ahead techniques that help identify

critical operations and promising reservations for these operations. Experimental results

presented in Chapters 3 and 5 indicate that these techniques play a critical role in keeping

backtracking at a low level.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

27

Chapter 3

The Job Shop Constraint Satisfaction Problem

3.1. Introduction

This chapter studies a variation of the job shop scheduling problem, referred to as the

job shop CSP, in which operations have to be performed within non-relaxable time

windows. Examples of such problems include factory scheduling problems, in which

some operations have to be performed within one or several shifts, spacecraft mission

scheduling problems, in which time windows are determined by astronomical events over

which we have no control, factory rescheduling problems, in which a small set of

operations need to be rescheduled without revising the schedule of other operations, etc.

The objective assumed in this chapter requires finding a feasible schedule as fast as

possible. A COP variation of this problem is studied in Chapter 4.

Because this version of the job shop scheduling problem is NP-complete, the worst-case

complexity of any procedure is expected to be exponential. CSP techniques that

interleave search with consistency enforcing techniques and variable/value ordering

heuristics have been reported to generally allow for important increases in search

efficiency when applied to other NP-complete CSPs. This chapter aims at determining if

similar savings can be obtained in job shop scheduling, and, more generally, if, on the

average, the CSP paradigm is sufficient to efficiently solve job shop scheduling

problems. In order to address this difficult question, the chapter first reviews generic

variable and value ordering heuristics that have been reported to perform particularly

well on other CSPs. The review suggests that these heuristics are too weak to solve hard

problems like job shop scheduling. This is because these heuristics fail to properly

account for the interactions induced by the high connectivity of the constraint graphs

often encountered in job shop scheduling problems. The chapter then introduces a new

probabilistic framework, within which variable and value ordering heuristics are defined

that better account for these interactions. A key to defining these more powerful

N. SADEH

28 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

heuristics lies in the ability of the probabilistic framework to provide estimates of the

reliance of an operation on the availability of a reservation, and measures of resource

contention between unscheduled operations.

Experimental results indicate that these new heuristics outperform both generic CSP

heuristics as well as more specialized heuristics recently developed for similar scheduling

problems. The results also suggest that, despite its exponential worst-case complexity,

the job shop scheduling problem admits many instances that can be solved efficiently.

There remain however some particularly difficult problems that require larger amounts of

search. A second set of experiments is also reported that attempts to assess the impact of

the granularity of the micro-opportunistic approach on the efficiency of the backtrack

search procedure. The results confirm our intuition that the fine granularity of the micro-

opportunistic approach is indeed instrumental in achieving the high search efficiency

observed in the first set of experiments.

Earlier discussions of different variations of the techniques reported in this chapter can

be found in [Sadeh 88, Sadeh 89a, Sadeh 89b, Sadeh 89c, Fox 89, Sadeh 90].

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

INTRODUCTION 29

3.2. Problem Definition

The job shop scheduling problem requires scheduling a set of jobs J ={ j , ... , j } on a1 n

set of physical resources RES={ R , ... ,R } . Each job j consists of a set of operations1 m l
l llO ={ O , ... ,O } to be scheduled according to a process routing that specifies a partial1 nl

l lordering among these operations (e.g. O BEFORE O). This chapter assumes job shopi j

CSPs with tree-like process routings. A tree-like process routing is one whose graph of
14precedence constraints forms a tree . Examples of tree-like process routings are

represented in Figure 3-1.

O 1

1
O 1

4

O 1

5
O 1

2

O 1

6

O 1

7

O 1

3
O 1

8

O 2

1
O 2

2
O2

3

jjjj
1111

jjjj
2222

Figure 3-1: Examples of tree-like process routings.

In the job shop CSP studied in this chapter, each job j has a release date rd and al l
ldue-date dd between which all its operations have to be performed. Each operation Oil

l lhas a fixed duration du and a variable start time st . The domain of possible start times ofi i

each operation is initially constrained by the release and due dates of the job to which the

operation belongs. If necessary, the model allows for additional unary constraints that

further restrict the set of admissible start times of each operation, thereby defining one or

several time windows within which an operation has to be carried out (e.g. a specific shift
l lin factory scheduling). In order to be successfully executed, each operation O requires pi i

14This is by far the most common situation, especially in factory scheduling. Extensions of the
techniques presented in this chapter to more general types of process routings will be briefly discussed as
well.

N. SADEH

30 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

l ldifferent resources (e.g. a milling machine and a machinist) R (1 ≤ j ≤ p), for each ofij i
l l lwhich there may be a pool of physical resources from which to choose, Ω ={r ,...,r },lij ij1 ijqij

l lwith r ∈ RES (1 ≤ k ≤ q) (e.g. several possible milling machines).ijk ij

More formally, the problem can be defined as follows:

VARIABLES:

The variables of the problem are:
l1. the operation start times, st , (1 ≤ l ≤ n , 1 ≤ i ≤ n), andi l

l l2. the resources, R , (1 ≤ l ≤ n , 1 ≤ i ≤ n , 1 ≤ j ≤ p) selected for thoseij il

resource requirements for which an operation has several alternatives.

CONSTRAINTS:

The non-unary constraints of the problem are of two types:

1. Precedence constraints defined by the process routings translate into
l l l l llinear inequalities of the type: st + du ≤ st (i.e. O BEFORE O);i i j i j

2. Capacity constraints that restrict the use of each resource to only one

operation at a time translate into disjunctive constraints of the form:
k l k k l l l k(∀p ∀q R ≠ R) ∨ st + du ≤ st ∨ st + du ≤ st . These constraints simplyip jq i i j j j i

k lexpress that, unless they use different resources, two operations O and Oi j

15cannot overlap .

Additionally, there are unary constraints restricting the set of possible values of

individual variables. These constraints include non-relaxable due dates and release dates,

between which all operations in a job need to be performed. The model actually allows

any type of unary constraint that further restricts the set of possible start times of an

operation. Time is assumed discrete, i.e. operation start times and end times can only
ltake integer values. Finally, each resource requirement R has to be selected from a set ofij

lresource alternatives, Ω ⊆ RES.ij

15These constraints have to be generalized when dealing with resources of capacity larger than one.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

PROBLEM DEFINITION 31

OBJECTIVE:

In the job shop CSP studied in this chapter, the objective is to come up with a feasible

solution as fast as possible. Notice that this objective is different from simply minimizing

the number of search states visited. It also accounts for the time spent by the system

deciding which search state to explore next.

EXAMPLE:

j
3

j
2

j
1

j
4

O
1
1 R1

O
4
1 R4 O

4
2 R2

O
3
1 R3 O

3
2 R1

O
2
1 R1 O

2
2 R2

O
1
2 R2 O

1
3 R3

O
3
3 R2

P1 P2

P3

P4 P5

P6

C9C8

C1 0

C6

C7

C1

C2

C5
C3

C4

capacity constraint

precedence constraint
Pj

Ci

Figure 3-2: A simple job shop problem with 4 jobs. Each node
is labeled by the operation that it represents and the

resource required by this operation.

Figure 3-2 depicts a simple job shop scheduling problem with four jobs J ={j , j , j , j }1 2 3 4

and four physical resources RES={ R ,R ,R ,R } . In this simple example each1 2 3 4

operation has a single resource requirement with a single possible value. Operation start

times are the only variables. For the sake of simplicity, it is assumed that all operations

have the same duration, namely 3 time units, that all jobs are released at time 0 and have

N. SADEH

32 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

to be completed by time 15 (the minimum makespan of this problem). None of these

simplifying assumptions is required by the techniques that will be discussed: jobs usually

have different release and due dates, operations can have different durations, several

resource requirements, and several alternatives for these requirements. However simple,

this example will often turn out to be sufficient to highlight the shortcomings of some

popular CSP heuristics. If necessary, the example will be slightly complicated in order to

emphasize other shortcomings that would not be immediately visible otherwise.

Notice that, in this problem, resource R is the only one to be required by four2

operations (one from each job). Since all operations in the example have the same

duration, resource R can be expected to constitute a small bottleneck. The next two2

sections attempt to see how generic CSP heuristics as well as more sophisticated

heuristics designed for scheduling problems deal with such bottlenecks as well as with

other constraint interactions common to job shop scheduling problems. The first section

focuses on variable ordering heuristics, while the second is concerned with value
16ordering heuristics .

3.3. Shortcomings of Popular Variable Ordering Heuristics

A powerful way to reduce the average complexity of backtrack search consists in

judiciously selecting the order in which variables are instantiated. The intuition is that,

by instantiating difficult variables first, backtrack search will generally avoid building

partial solutions that it will not be able to complete later on. This reduces the chances

(i.e. the frequency) of backtracking. Instantiating difficult variables first can also help

reduce the amount of backtracking when the system is in a deadend state that is not

immediately detected by its consistency checking mechanism. Indeed, by instantiating

difficult variables, the system moves to more constrained deadend states that are easier to

detect. This reduces the time the system wastes attempting to complete partial solutions

that cannot be completed.

16As pointed out in Chapter 2, in the micro-opportunistic approach, the term variable ordering heuristic
refers to the selection of the next operation to be scheduled, and the term value ordering heuristic refers to
the selection of a promising reservation for that operation (i.e. a start time and a resource for each resource
requirement for which there are several possibilities). Since an operation generally involves several
variables (i.e. a start time and a set of resource requirements), it might have been more appropriate to use
the term subproblem selection heuristic or aggregate variable ordering heuristic instead of simply variable
ordering heuristic. Similarly the term value ordering heuristic may not be the most appropriate. We keep
this terminology because of its common use in the CSP literature.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SHORTCOMINGS OF POPULAR VARIABLE ORDERING HEURISTICS 33

Two types of variable ordering heuristics are usually distinguished:

1. Fixed variable ordering heuristics: A unique variable ordering is

determined prior to starting the search and used in each branch of the search

tree;

2. Dynamic variable ordering heuristics: The ordering is dynamically

revised in each search state in order to account for earlier assignments.

Different branches in the search tree generally entail different variable

orderings.

Clearly fixed variable orderings require less computation since they are determined

once and for all. On the other hand, dynamic variable ordering heuristics are potentially

more powerful because of their ability to identify difficult variables within specific

search states rather than for the overall search tree. Many CSP studies performed on

simple problems such as N-queens or on moderate-size problems have found that

dynamic variable ordering heuristics are too expensive (e.g. [Dechter 89a]). There are

however more difficult problems, for which dynamic variable ordering heuristics can be

expected to achieve exponential savings in the average amount of search required to

come up with a solution [Purdom 83]. For these more difficult problems, it has often been

suggested that a simple heuristic known as the Dynamic Search Rearrangement

heuristic (DSR) would be sufficient [Bitner 75, Purdom 83, Dechter 89a, Ginsberg 90].

In each search state, DSR looks for the variable with the smallest number of remaining

values, and selects this variable to be instantiated next. DSR has often been used as a

benchmark to determine whether it is worthwhile using a dynamic variable ordering

heuristic for a given class of problems. The experiments presented at the end of this

chapter clearly show that job shop scheduling belongs to the class of more difficult

problems for which a dynamic variable ordering is justified. Furthermore these

experiments show that even DSR is often insufficient to solve realistic job shop CSPs.

The scheduling problem introduced in the previous section helps understand the

shortcomings of DSR. Figure 3-3 depicts the same problem after applying the

consistency enforcing techniques described in Chapter 2. According to DSR, there are
1 1six operations that are equally good candidates to be assigned a reservation first: O , O ,1 2

1 3 3 3O , O , O , and O . Indeed, these six operations all appear equally difficult to DSR, as3 1 2 3

they each have seven possible start times left. The other four operations in the problem

N. SADEH

34 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

j
3

j
2

j
1

j
4

O
1
1 R1

O
4
1 R4 O

4
2 R2

O
3
1 R3 O

3
2 R1

O
2
1 R1 O

2
2 R2

O
1
2 R2 O

1
3 R3

O
3
3 R2

P1 P2

P3

P4 P5

P6

C9C8

C1 0

C6

C7

C1

C2

C5
C3

C4

capacity constraint

precedence constraint
Pj

Ci

[0 , 6] [3 , 9] [6 , 1 2]

[0 , 9] [3 , 1 2]

[0 , 6] [3 , 9] [6 , 1 2]

[3 , 1 2][0 , 9]

Figure 3-3: The same job shop CSP after consistency labeling.
Start time labels are represented as intervals. For

instance, [0,6] represents all start times between time 0
and time 6, as allowed by the time granularity, namely

{0,1,2,3,4,5,6}.

appear easier as they each have ten possible start times left. It is easy to see that some of

the six operations that appear equally difficult to DSR are in fact more difficult to
1 3schedule than others. Consider operations O and O : both operations require resource2 3

R , which is required by a total of four operations. Moreover, in three cases out of four,2

the operation requiring resource R is the last operation in its job. This high contention2
1 3for resource R indicates that O and O will probably be difficult to schedule. On the2 32

3other hand, an operation like O competes only with one other operation for resource R ,1 3
1 3 1namely operation O . Moreover, the fact that O is the first operation in job j , while O is3 1 31

the last operation in job j , suggests that these two operations are not very likely to3
1 3compete with each other. Operations O and O can be expected to be easier to schedule3 1

1 3than operations O and O . Unfortunately DSR is not able to account for these2 3

observations. This is because DSR simply counts the number of remaining values of

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SHORTCOMINGS OF POPULAR VARIABLE ORDERING HEURISTICS 35

each variable, but fails to estimate the likelihood that these values remain available later

on. Clearly start times of operations competing for highly contended resources are more

likely to become unavailable than those of other operations.

In this example, the bottleneck resource R also corresponds to the largest clique of2

capacity constraints. Therefore, a variable ordering heuristic that identifies difficult

variables (i.e. nodes in the constraint graph) as those with many incident constraints

might actually provide better advice than DSR. Several such variable ordering heuristics

have been proposed in the literature. These heuristics are generally fixed variable

ordering heuristics, unless new constraints are added to the problem as it is solved. One

such heuristic is the Minimum Width (MW) heuristic [Freuder 82, Dechter 89a]. MW

"orders the variables from last to first by selecting, at each stage, a node in the constraint
17graph which has a minimal degree in the graph remaining after deleting from the

graph all nodes which have been selected already" [Dechter 89a]. A variation of this

heuristic known as the Minimum Degree (MD) heuristic simply ranks variables

according to their degree in the initial constraint graph [Dechter 89a]. In the example
1depicted in Figure 3-2, MD would select O to be scheduled first. There are also MW2

orderings starting with that operation. In general, scheduling problems are not that

simple, and fixed variable ordering heuristics like MD or MW do not provide very good

advice either. This is best illustrated by slightly modifying the scheduling problem

depicted in Figure 3-2.

Suppose, for instance, that we change the problem and introduce a fifth resource, say

R . Suppose also that we allow any of the operations requiring R or R in the original5 1 3

problem to use R as an alternative resource. Now we have:5

1 2 3• Ω = Ω = Ω ={R ,R }11 11 21 1 5

1 3• Ω = Ω ={R ,R }31 11 3 5

In this case, the two cliques of capacity constraints corresponding to R and R are1 3
1 118subsumed by a larger clique of capacity constraints involving five operations: O , O ,1 3

2 3 3O , O , and O (Figure 3-4). Due to the additional capacity constraints resulting from the1 1 2

17The degree of a node is the number of constraints incident to that node.

18Capacity constraints between operations belonging to the same job have been subsumed by precedence
constraints in that job.

N. SADEH

36 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

j
3

j
2

j
1

j
4

O
1
1 R1 , 5

O
4
1 R4 O

4
2 R2

O
3
1 R3 , 5 O

3
2 R1 , 5

O
2
1 R1 , 5 O

2
2 R2

O
1
2 R2 O

1
3 R3 , 5

O
3
3 R2

P1 P2

P3

P4 P5

P6

C9

C8 C1 0

C6

C7

C1 1

C1 7

C5C1 4

C1 5

capacity constraint

precedence constraint
Pj

Ci

C1 2

C1 3

C1 6

C1 8

Figure 3-4: A new resource R is added to the problem.5
R stands for R or R . R stands for R or R .1,5 1 5 3,5 3 5

introduction of R , there are now MW orderings and MC orderings starting with some of5

these five operations, while in fact the addition of R has made these five operations even5

easier to schedule. This is because MW and MC do not account for constraint tightness,

namely the difficulty of satisfying a specific constraint [Nadel 86c, Fox 89]: the addition

of R has significantly loosened the capacity constraints participating in the new clique.5
19Hence operations connected by these constraints have become easier to schedule .

Nadel has proposed more sophisticated variable ordering heuristics based on

probabilistic estimates of the expected number of nodes explored or based on estimates of

the number of consistency checks performed by the system [Nudel 83, Nadel 86c]. His

19Another example of a variable ordering heuristic that does not account for constraint tightness is the
Max-cardinality search order which arbitrarily selects the first variable to be instantiated, and then at
each stage picks the variable connected to the largest number of already instantiated variables [McGregor
79, Dechter 89a]. This heuristic can also be seen as a fixed variation of DSR.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SHORTCOMINGS OF POPULAR VARIABLE ORDERING HEURISTICS 37

measures of variable criticality are very expensive to evaluate in their general form, and

rely solely on measures of constraint satisfiabilities. On the other hand, resource

contention is the result of a very specific type of interactions between many variables

(essentially interactions between many inequality constraints), which cannot be solely

captured by measures constraint satisfiabilities.

Finally, variable ordering heuristics described in the CSP literature treat all problem

constraints uniformly. In job shop scheduling problems, there are however two very

different types of constraints: capacity constraints and precedence constraints. As pointed

out in Chapter 2, the consistency enforcing techniques implemented in the micro-

opportunistic approach take advantage of particular algebraic properties of precedence

constraints to efficiently ensure that backtracking only occurs as a result of the violation

of capacity constraints. This particular feature of the consistency enforcing mechanism

can in turn be exploited to design a more effective variable ordering heuristic. Indeed,

because of the consistency enforcement mechanism implemented in the micro-

opportunistic search procedure, the criticality of an operation is uniquely a function of the

difficulty of finding a reservation for that operation that will not violate some capacity

constraints.

A specialized variable ordering heuristic that takes advantage of this observation is that

of Keng and Yun [Keng 89], though its authors apparently failed to relate the strength of

their heuristic to this observation. Keng and Yun suggested a generalization of DSR in

which each operation reservation (i.e. each value) is assigned a survivability measure

reflecting its chance of satisfying the capacity constraints (i.e. its chance of surviving the

competition with other operations for the possession of a resource). The operation to be

scheduled next is the one with the smallest global survivability, as determined by the sum

of the survivabilities of each of its (remaining) possible reservations. Experiments

presented at the end of this chapter, show that this heuristic performs better than all the

generic heuristics described above. They also show that this heuristic is quite expensive,

as it requires inspecting all the remaining reservations (i.e. values) of all unscheduled
20operations . In scheduling problems with several hundred operations, each with several

20Notice also that this heuristic may still identify operations with just a few remaining possible
reservations as being critical while in fact these reservations may not be conflicting with the reservations of

4
any other operation. This could be the case if, for instance, operation O in the example in Figure 3-2 had1
only a small number of possible start times. In fact, the consistency enforcing technique ensures that
backtracking will never be caused by this operation, since there is no capacity constraint incident on it.

N. SADEH

38 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

hundred possible start times and several possible resources, this heuristic may not be cost

effective. More efficient heuristics can be obtained by focusing on one or a small

number of cliques of tight capacity constraints. A good variable ordering heuristic

consists in selecting the operation that is the most likely to violate a constraint in these

cliques. A heuristic based on this idea is described in Section 5, which runs faster than

Keng and Yun’s heuristic while achieving an even higher search efficiency.

3.4. Shortcomings of Popular Value Ordering Heuristics

Another powerful way to reduce the average complexity of backtrack search relies on

judiciously selecting the order in which value assignments are tried for a variable. A

good value ordering heuristic to minimize backtracking consists in assigning so-called

least constraining values. A least constraining value is one that is expected to participate

in many solutions to the problem (or to the subproblem defined by the current search

state). By first trying least constraining values, the system will generally maximize the

number of values left to variables that still need to be instantiated, and hence it it will

avoid building partial solutions that cannot be completed.

Attempting to exactly compute the number of global solutions in which a given

assignment (i.e. value) participates would be futile as it would require finding all
21solutions to the problem. Instead Dechter and Pearl developed a heuristic, called ABT ,

that relies on tree-like relaxations of the problem to approximate the goodness of a value.

A tree-like relaxation of a CSP is one whose constraint graph is a tree that spans some or

all the nodes (i.e. variables) of the original CSP. Within such relaxations, the number of
2solutions in which a value participates can be efficiently computed in O(nk) steps,

where n is the number of variables in the CSP, and k the maximum number of possible

values of a variable. The intuition is that, if one can find a tree-like relaxation that is

close enough to the original CSP, a good value for the relaxation should also be a good

value for the original CSP. One way to obtain tight tree-like relaxations is by associating

with each (binary) constraint C in the original constraint graph a weight w(C) equal to the

satisfiability of that constraint (i.e. the number of pairs of values that satisfy the

constraint). A tight tree-like relaxation corresponds to a Minimum Spanning Tree (MST)

in the resulting network (see also [Chow 68]).

21ABT stands for Advised Backtracking.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SHORTCOMINGS OF POPULAR VALUE ORDERING HEURISTICS 39

While ABT has performed particularly well on some CSPs, it does not appear

appropriate for CSPs such as job shop scheduling. Indeed, even for a fixed variable

ordering, the heuristic generally requires the computation of a fixed MST for each of the

n levels in the search tree. This amounts to n MST computations, each of which typically
2 3requires O(n) elementary computations [Tarjan 83b] (hence a total of O(n) elementary

computations). The experimental results presented at the end of this chapter indicate that

a fixed variable ordering is generally not enough to efficiently solve job shop scheduling

problems. Under these conditions, it might even be necessary to identify new tree-like
22relaxations in each search state . These computations may become quite expensive for

large CSPs. There is however a more important problem with this heuristic, whether

using minimum spanning tree relaxations or not: there is no guarantee that there even

exists a tight enough tree-like relaxation of the CSP, namely a tree-like relaxation that
23will provide sufficiently good advice to guide search . This is most likely to be the case

with job shop scheduling problems, as explained below with an example.

22This would also require updating the weights of each constraint in each search state.

23The experiments reported in [Dechter 88] seemed to indicate the opposite. In these experiments, it
appeared that often the advice provided by ABT was too expensive and too accurate. Instead advice
provided by looser relaxations ended up being more cost-effective. However, these results involved fairly
easy problems with 15 variables, 5 values per variable, and a relatively high density of solutions.

N. SADEH

40 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

Consider constraint P in the scheduling problem depicted in Figure 3-3. P is a1 1
1 1precedence constraint between operation O and operation O . The set of start time pairs1 2

1 1(st , st) that satisfy constraint P is:1 2 1

{ (0 ,3),(0 , 4),...,(0 , 9),(1 , 4),(1 , 5),...,(1 , 9),...,(6 , 9)}

In order to identify a tight tree-like relaxation, P is assigned a weight, w(P), equal to1 1

the cardinality of that set, namely w(P)=7+6+5+4+3+2+1= 28. Similar1

computations can be performed to compute the weights of other constraints. These

weights are as follows:

• w(P)=w(P)=w(P)=w(P)=281 2 4 5

• w(P)=w(P)=553 6

• w(C)=38, w(C)=29, w(C)=381 2 3

• w(C)=434

• w(C)=w(C)=38 , w(C)=29 , w(C)=56 , w(C)=w(C)=385 6 7 8 9 10

Figure 3-5 shows an MST relaxation of the scheduling problem obtained using these

weights. It appears that the MST relaxation includes 10 out of the 16 constraints present

in the original CSP. The loss of information initially contained in the cliques of capacity

constraints is even more dramatic. Only 2 out of the 6 constraints in the clique

corresponding to R have been preserved. This is not an accident. In general a resource2
Mrequired by M operations will result in a clique of capacity constraints. At most()2

M-1 of these capacity constraints can be preserved in any tree-like relaxation of the

problem. Under these conditions, we should not be surprised if the advice provided by

ABT for job shop CSPs is not very effective. Suppose for instance that the system selects
1 24O to be instantiated first . Using the MST relaxation represented in Figure 3-5, ABT2

would recommend assigning start time 4 to this operation. A careful examination of the
1scheduling problem reveals however that there is no feasible schedule with O starting at2

14. Indeed it appears that if O were to start at time 4, the three other operations requiring2

24It should now be clear that this is a good choice, since this operation has only seven possible start times
and requires resource R , the main bottleneck of the problem.2

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SHORTCOMINGS OF POPULAR VALUE ORDERING HEURISTICS 41

j
3

j
2

j
1

j
4

O
1
1 R1

O
4
1 R4 O

4
2 R2

O
3
1 R3 O

3
2 R1

O
2
1 R1 O

2
2 R2

O
1
2 R2 O

1
3 R3

O
3
3 R2

P1 P2

P4 P5

P6

C6

C2

C5

C3

capacity constraint

precedence constraint
Pj

Ci

[0 , 6] [3 , 9] [6 , 1 2]

[0 , 9] [3 , 1 2]

[0 , 6] [3 , 9] [6 , 1 2]

[3 , 1 2][0 , 9]

Figure 3-5: An MST relaxation of the scheduling problem.

resource R would all have to be scheduled between time 7 and time 15. In other words,2

there would be 8 time units left to fit 3 operations that each have a duration of 3 time

units. This is clearly impossible.

Keng and Yun have developed a specialized value ordering heuristic that can deal more

effectively with cliques of capacity constraints [Keng 89]. This heuristic first estimates

the overall need for each resource in function of time. Based on these estimates,

operation reservations are ranked according to how well they are expected to prevent

contention with the resource requirements of other operations. As the results reported

later in this chapter indicate, Keng and Yun’s value ordering heuristic generally

outperforms ABT. However their heuristic omits to leave enough room to other

operations within the same job so that they can be assigned least constraining

reservations as well. In other words, Keng and Yun’s heuristic accounts only for the

capacity constraints incident at the current operation, but fails to account for capacity

constraints at other operations connected by precedence constraints to the current

operation.

N. SADEH

42 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

The next section describes a probabilistic model of the search space that better accounts

for the high connectivity of constraint graphs typically found in job shop scheduling, and

for the constraint interactions induced by these graphs. New variable and value ordering

heuristics are defined within this framework that attempt to remedy the shortcomings

identified above.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SHORTCOMINGS OF POPULAR VALUE ORDERING HEURISTICS 43

3.5. New Variable and Value Ordering Heuristics

3.5.1. Underlying Assumptions

Rigorously speaking, good variable and value ordering heuristics are heuristics that

minimize the time required for search to complete (i.e. either with a solution, if one

exists, or with the answer that the problem is overconstrained). If the problem is

infeasible, search time is independent of the value ordering heuristic (except for the time

spent by the system ordering values according to the heuristic): once a variable has been

selected, the system will have to try each one of its remaining values before being able to

conclude that the current partial solution cannot be completed. In general variable and

value ordering heuristics affect the number of search states that are explored, the average

amount of time spent enforcing consistency in each search state, and the amount of time

spent by the system ordering variables and values according to these heuristics. Variable

and value ordering heuristics may even affect each other’s performance. The complexity

of these interactions precludes the design of heuristics that directly minimize the

expected search time. One can however attempt to design heuristics that aim at reducing

some of the factors identified above. The approach taken in this section aims at

developing heuristics that efficiently reduce the expected number of search states

explored by the system. Because in the micro-opportunistic approach the time spent by

the system enforcing consistency is mainly a function of the number of operations that

have already been scheduled (i.e. the depth in the search tree) rather than a function of

the specific operations that have been scheduled, such heuristics are expected to

effectively reduce search time as well.

In this section, it is postulated that a critical variable is one that is expected to cause

backtracking, namely one whose remaining possible values are expected to conflict with

the remaining possible values of other variables. Under a set of simplifying

independence assumptions, Haralick and Elliott have shown that such a measure of

criticality will minimize the expected length of branches in the search tree, and hence the

total number of search states that need to be visited to come up with a solution [Haralick

N. SADEH

44 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

2580] . It is also postulated that a good value is one that is expected to participate in

many solutions.

In the next subsection, a probabilistic model of the search space is introduced that can

be used to approximate variable criticality and value goodness.

3.5.2. A Probabilistic Model of the Search Space

In the micro-opportunistic approach, critical operations are those that are likely to

violate capacity constraints. These operations can be identified as operations that heavily

rely on the availability of highly contended resource/time intervals. The consistency

checking mechanism embedded in the micro-opportunistic search procedure ensures that

the only reservations left to unscheduled operations are reservations that will not directly

conflict with reservations already allocated to other operations. Constraint violations that

will force the scheduler to backtrack are violations that will occur between operations

that have not yet been scheduled. Contention between (unscheduled) operations for a

resource over some time interval is determined by the number of (unscheduled)

operations competing for that resource/time interval and the reliance of each one of

these operations on the availability of this resource/time interval. Typically,

operations with few possible reservations left will heavily rely on the availability of any

one of these reservations, whereas operations with a handful of remaining reservations

will rely much less on any one of these reservations.

In order to measure resource contention in a given search state, a probabilistic

framework is assumed, in which each reservation ρ that remains possible for an
l lunscheduled operation O is assigned a subjective probability σ (ρ) to be allocated to thati i

operation. Because a priori there is no reason to believe that one reservation is more

likely to be selected than another, each operation reservation is assigned an equal

probability to be selected. Clearly, in any schedule, each operation will be assigned only

one reservation. Hence, the reservation distributions are chosen to be of the form:

25See [Haralick 80] pp. 307-312. At the end of their proof, the authors make the unnecessary assumption
that each variable value is equally likely to become unavailable. Under this assumption, the variable with
what they call the smallest success probability (or equivalently the variable most likely to create
backtracking) is the one with the smallest number of remaining values. The authors exploit this result to
motivate their use of the Dynamic Search Rearrangement heuristic. When this last assumption is omitted,
Haralick and Elliott’s proof shows that (under several other simplifying assumptions made earlier in their
proof) choosing the variable most likely to create backtracking will minimize the expected length of each
branch in the search tree.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 45

1lσ (ρ)=i lNBRi

l lwhere NBR is the number of remaining reservations of O in the current search state. Thisi i

distribution mirrors our intuition that an operation with many possible reservations does

not heavily rely on any single one of its remaining reservations, and hence the probability

of any single one of these reservations to be selected is rather low. On the other hand,

operations with few remaining possible reservations are more likely to have to use any

one of these reservations. Using these subjective reservation distributions, it is possible
lto estimate the reliance of an operation O on the availability of a resource R ∈ RES ati k

time τ as the probability that the reservation allocated to this operation will require that

resource at that time. This probability will be referred to as the individual demand of
l loperation O for resource R at time τ. It will be denoted D (R ,τ). This probability cani ik k

lbe computed as the sum of the probabilities σ (ρ) of all remaining reservations ρ ofi
loperation O that require resource R at time τ. Finally, by adding the individual demandsi k

of all unscheduled operations requiring resource R , an aggregate demand profile,k
aggrD (τ), is obtained that indicates contention between unscheduled operations forRk

resource R as a function of time. Alternatively, one can postulate a stochastick

mechanism that completes the current partial schedule (in the current search state) by
l lrandomly assigning a reservation to each unscheduled operation O according to its σi i

l ldistribution. D (R ,τ) is the probability that the stochastic mechanism assigns O ai ik
aggrreservation that requires R at time τ, and D (τ) is the expected number of reservationsRk k

made by the stochastic mechanism for R at time τ (or the expected number of operationsk

requiring that resource at that time).

Similar demand profiles are built by Keng and Yun’s variable and value ordering

heuristics [Keng 89]. The heuristics that will be presented differ from those of Keng and
26Yun in the way they exploit these demand profiles . Earlier Muscettola and Smith also

proposed techniques to build probabilistic demand profiles, based on a predefined

variable ordering [Muscettola 87].

The following illustrates the construction of these profiles for the example introduced in

Figure 3-2.

26The work presented here was performed concurrently to that of Keng and Yun [Sadeh 88, Sadeh
89a, Fox 89]. Notice that the interpretation given by Keng and Yun for their demand profiles is not a
probabilistic one.

N. SADEH

46 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

1 1D (τ): Individual Demand of O for R2 2 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

2 2D (τ): Individual Demand of O for R2 2 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

3 3D (τ): Individual Demand of O for R3 3 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

4 4D (τ): Individual Demand of O for R2 2 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

aggrD (τ): Aggregate Demand for RR 22

0.00
0.25
0.50
0.75
1.00
1.25
1.50

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

Figure 3-6: Building R ’s aggregate demand profile in the initial search state.2

1Consider operation O in the initial search state depicted in Figure 3-3. After enforcing2
1consistency, this operation has 7 possible reservations (i.e. start times st =3 ,4, . . . ,9),2

11 1 2each with a subjective probability σ (st)= to be selected. On the other hand, O has 102 2 27

2possible start times: st =3 ,4 , . . . , 12. Therefore the subjective probability that any one of2

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 47

12 2these 10 possible start times will be selected is σ (st)= . The individual demand of an2 2 10

loperation O for resource R at some time t can be computed by simply adding thei 2

probability of each reservation that would require using resource R at time τ, i.e. by2
ladding the probabilities of all reservations starting between t and t − du . For instance:i

1 1D (R , t)= σ (τ)∑2 22
1

t − du < τ ≤ t2

11In particular D (R , t)= for all times t such that 3 ≤ t < 4. This is because there is only2 2 7

1one possible start that would cause operation O to use resource R at any of these times,2 2
1namely st =3. Between time 4 and time 5, things are different as there are two possible2

1 1 1start times that would cause O to use R over that time interval:st =3 and st =4.2 2 22
21Consequently the demand of O for resource R between time 4 and time 5 is . Similar2 2 7

1computations can be performed for the other time intervals over which O may require2

resource R . Figure 3-6 shows the individual demands of all four operations requiring2

resource R , as well as the aggregate demand for that resource obtained by adding the2

four individual demands over time. As expected, the two operations with only seven
1 3possible start times (namely O and O) have more compact individual demands than the2 3

2 2two operations with ten possible start times (namely O and O). Notice also, that,2 4
lbecause of the normalization of the σ (ρ) distributions, the total individual demand of ani

operation with only one possible resource (like all the operations in this example) is

always equal to the duration of that operation. This total demand is simply spread

differently over time, depending on the number of start times still available to the

operation.

Figure 3-7 displays the aggregate demands for the four resources of the example. As

anticipated, resource R appears to be the resource that is the most contended for.2

In general, building these demand profiles will require to look at each remaining

reservation of each unscheduled operation. Hence the worst-case complexity of the

procedure is O (Nk) in each search state, where N is the number of unscheduled

operations and k the number of remaining reservations of an unscheduled operation. In

practice, the sets of remaining reservations of many operations do not change from one

search state to another and it is more efficient to only update the individual demands of

those operations whose sets have shrunk. The old individual demands of operations

whose sets of possible reservations have shrunk are subtracted from the aggregate

N. SADEH

48 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

aggrD (τ): Aggregate Demand for RR 11

0.00
0.25
0.50
0.75
1.00
1.25
1.50

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

aggrD (τ): Aggregate Demand for RR 22

0.00
0.25
0.50
0.75
1.00
1.25
1.50

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

aggrD (τ): Aggregate Demand for RR 33

0.00
0.25
0.50
0.75
1.00
1.25
1.50

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

aggrD (τ): Aggregate Demand for RR 44

0.00
0.25
0.50
0.75
1.00
1.25
1.50

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

Figure 3-7: Aggregate demands in the initial search state for each of the four resources.

demand profiles, and the new individual demands are added instead. It is possible to

perform similar updates when the system backtracks.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 49

3.5.3. A Variable Ordering Heuristic Based on Measures of Resource
Contention

The aggregate demand for a resource over a time interval is a measure of contention

between unscheduled operations for that resource/time interval. In general, the

resource/time interval with the highest demand (i.e. the one that is the most contended

for) can be expected to be the one where capacity constraints are most likely to be
27violated . As explained earlier, the individual contribution of an operation to the

demand for a resource/time interval (i.e. its individual demand for that resource/time

interval) is also a measure of the reliance of that operation on the availability of that

resource/time interval. Accordingly, the operation with the highest contribution to the

demand for the the most contended resource/time interval is considered the most

likely to violate a capacity constraint, since it is the one that relies most on the

availability of that highly contended resource/time interval.

Several variations of this variable ordering heuristic have been implemented. The

simplest and often most effective one inspects each resource’s aggregate demand profile

using time intervals of duration equal to the average duration of the operations requiring

that resource. The heuristic then picks the operation with the largest contribution (i.e. the

largest individual demand) to the demand for the most contended of these time intervals.

This is the variable ordering heuristic used in the experiments reported at the end of this

chapter. It will be referred to as ORR, which stands for "Operation Resource Reliance"

heuristic.

Figure 3-7 displays the demand profiles for R , R , R , and R , the four resources of the1 2 3 4

problem introduced in Section 3.2. The largest demand peak identified by ORR is that

for resource R between time 8 and 11, which corresponds precisely to the clique of tight2

capacity constraints identified earlier. Figure 3-8 indicates that the operation with the
3largest contribution to that demand is O . This is not a coincidence, this operation3

competes for the most contended resource and belongs to the group of six operations that

have only seven possible start times left after consistency checking. Notice that, in this

example, there are actually two intervals in the demand profile of R that qualify as most2

contended for: [7,10[and [8,11[. Had the scheduler chosen [7,10[instead of [8,11[, it

27These tight capacity constraints are those connecting operations that contribute to the demand for the
highly contended resource/time interval.

N. SADEH

50 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

aggrD (τ): Aggregate Demand for RR 22

0.00
0.25
0.50
0.75
1.00
1.25
1.50

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

contention
peak

1 1D (τ): Individual Demand of O for R2 2 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

2 2D (τ): Individual Demand of O for R2 2 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

3 3D (τ): Individual Demand of O for R3 3 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

4 4D (τ): Individual Demand of O for R2 2 2

0.00
0.25
0.50

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time

Figure 3-8: ORR Heuristic: the most critical operation is the one that relies
most on the most contended resource/time interval.

1 3 2would have selected O as the operation to be scheduled next. In fact O and O appear2 3 2

equally critical in this example.

This heuristic requires to successively look at each resource, and each time interval in

that resource’s calendar, in order to identify the one that is the most contended for. If

there are m resources and if the scheduling horizon is H, this requires O(Hm) elementary

computations.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 51

3.5.4. A Value Ordering Heuristic Avoiding Resource Contention

In Section 3.4, ABT was found to have two major weaknesses when applied to job shop

scheduling. The first weakness had to do with the computational overhead involved in the

determination of tight tree-like relaxations of the problem, while the second one lay in the

inability of tree-like relaxations to properly account for cliques of capacity constraints. In

contrast, a value ordering heuristic is now described that attempts to avoid resource

contention while relying on predetermined tree-like relaxations. The tree-like relaxations

are comprised of some or all the precedence constraints of the process routing to which

the current critical operation belongs (i.e. the operation selected to be scheduled next by

the variable ordering heuristic). Rather than simply counting the number of solutions to

the relaxation in which a given reservation assignment participates, the value ordering

heuristic makes up for the lack of information within this predefined relaxation by

accounting for the probability that a solution to the relaxation also satisfies the

cliques of capacity constraints. The probability that a solution satisfies the cliques of

capacity constraints (i.e. survives resource contention) is estimated using the same

demand profiles that were constructed for the variable ordering heuristic.

For job shop CSPs with tree-like process routings, the tree-like relaxation adopted by

the heuristic is comprised of all the unscheduled operations connected by precedence

constraints to the current critical operation, along with these precedence constraints.

Each candidate reservation assignment (for the critical operation) is ranked according to

the number of solutions to the relaxation with which it is compatible (i.e. the number of

compatible schedules for the job to which the critical operation belongs) that are expected

to survive resource contention. The reservation compatible with the largest number of

such schedules is the one selected by the heuristic. The following describes the

approximations used by the system to compute the probability that a reservation survives

resource contention and the probability that a job schedule survives resource contention.

A dynamic programming technique to efficiently count the number of schedules

compatible with a given reservation and expected to survive contention is presented in

Appendix A. This technique is an adaptation of a procedure developed by Dechter and

Pearl for the ABT heuristic [Dechter 88] (see also [Pearl 88]). It is shown that this

technique can be further speeded up by taking advantage of the linearity of precedence

constraints.

N. SADEH

52 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

3.5.4.1. Estimating the Probability that a Reservation Survives Contention

l l l l l lLet O be an unscheduled operation and ρ =<st = t ,R = r ,R = r , . . . > one of itsi i i1 i1k i2 i2k1 2
lremaining reservations. The probability that assigning reservation ρ to operation O willi

not conflict with the resource requirements of other operations will be referred to as the
l lsurvivability of reservation ρ (for O). It will be denoted surv (ρ). The survivability ofi i

lassigning reservation ρ to O will be approximated by the product of the probability thati

each one of the resources required by that reservation will be available between t and
lt + du :i

l l l lsurv (ρ)= avail (r , t , t + du) (3.1)∏i i ijk i
l l l

r ∈ {r ,r , . . .}ijk i1k i2k1 2

l l l lwhere avail (r , t , t + du) stands for the probability that resource r will not be requiredi ijk i ijk
lby any other operation between t and t + du (also the probability that assigning thisi

lresource to O will not create backtracking).i

l l l l lLet r = R ∈ RES. The probability avail (r , t , t + du) that resource r = R will not beijk i ijk i ijkp p
lrequired by any other operation between t and t + du can be approximated using thei

aggregate demand profile of resource R (which is already maintained by the system forp

the ORR variable ordering heuristic) and a vector n (τ), which is also maintained by thep

system to keep track of the number of (unscheduled) operations competing for R as ap
l28function of time . At any time t ≤ τ < t + du there are by definition n (τ) − 1i p

lunscheduled operations competing with operation O for resource R . The total demandi p
aggr lof these other unscheduled operations for R at time τ is D (τ) − D (R ,τ) . AssumingR ip pp

that each of these n (τ)−1 other operations equally contributes to this demand, thep

probability that none of these operations requires R at time τ is given by:p

n (τ) − 1aggr l pD (τ) − D (R ,τ)R i pp(1 −) (3.2)
n (τ) − 1p

l l l lIt is tempting to approximate avail (r , t , t + du), i.e. the probability that r = R will bei ijk i ijk p

aggr28D (τ) is the aggregate demand for R at time τ whereas n (τ) is the number of operationsp pRp
contributing to that demand.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 53

l lavailable to O between t and t + du , as the product of the probabilities that this resourcei i
l l lwill be available to O on each one of the du time intervals between t and t + du . Ini i i

general, this approximation is too pessimistic. It assumes that the operations competing
l lwith O have a duration equal to 1, i.e. that any of these operations could require r = Ri ijk p

over time interval [τ ,τ +1[without requiring it over time interval [τ +1 , τ +2[or over
ltime interval [τ− 1, τ[. Instead, because operations competing for r = R generallyijk p

require several contiguous time intervals, a better approximation consists in subdividing

the calendar of that resource into buckets of duration AVG(du), where AVG(du) is the
l l l laverage duration of the operations competing for r = R . avail (r , t , t + du) is thenijk i ijk ip

l
duilapproximated as the probability that O will be able to secure the time buckets thati AVG(du)

it requires to fit on the resource’s calendar. Using Equation (3.2), this can be

approximated as:
l

dui
AVG(n (τ) − 1) ×paggr l AVG(du)AVG(D (τ) − D (R , τ))pR ipl lavail (R , t , t + du) = (1 −) (3.3)i ip AVG(n (τ) − 1)p

aggr lwhere AVG(D (τ) − D (R ,τ)) and AVG(n (τ) − 1) are respectively the average ofR i p pp
aggr l lD (τ) − D (R ,τ) and the average of n (τ) − 1 over time interval [t, t+du [.R i ip pp

Figure 3-9 depicts reservation survivabilities for the three operations in job j , the job to3
3which belongs O , the operation selected to be scheduled in the initial search state. The3

shape of these survivability curves is easily interpreted by looking at Figures 3-3 and 3-7.
3 3Consider operation O . Figure 3-3 indicates that O only competes with one other1 1

1 3operation for resource R , namely operation O . Because operation O has a duration3 13
3 1 1 3du =3 and because the earliest possible start time of operation O is st =6, operation O1 3 3 1

1 3will never conflict with operation O if it is scheduled at st =0, 1, 2, or 3. This is why the3 1
3survivability of each of these start times is equal to 1. For start times st =4 ,5 , and 6 the1

1probability of conflicting with a reservation assigned to O increases, as indicated in3

Figure 3-7 by the higher aggregate demand for resource R between time 6 and 9 (the3

only times where a conflict between the two operations is possible). Because the

probability of such a conflict remains fairly low (i.e. the conflicts involve only two

operations and only a small fraction of the reservations of these two operations conflict
3with each other), the survivabilities of start times st =4 ,5 , and 6 remain fairly close to 11

3 3(though smaller than 1). Because operations O and O compete with more operations2 3

N. SADEH

54 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

3Reservation Survivabilities for O1

0.00

0.20

0.40

0.60

0.80

1.00

su
rv

iv
ab

ili
ty

0 1 2 3 4 5 6 7 8 9 10 11 12
start time

3Reservation Survivabilities for O2

0.00

0.20

0.40

0.60

0.80

1.00

su
rv

iv
ab

ili
ty

0 1 2 3 4 5 6 7 8 9 10 11 12
start time

3Reservation Survivabilities for O3

0.00

0.20

0.40

0.60

0.80

1.00

su
rv

iv
ab

ili
ty

0 1 2 3 4 5 6 7 8 9 10 11 12
start time

Figure 3-9: Survivability measures for the reservations of operations in job j , the job3
3to which belongs O , the current critical operation.3

3than O , their reservation survivabilities are smaller. The shape of the survivability1

curves of these two operations can be interpreted using similar, though slightly more

complex arguments.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 55

3.5.4.2. Estimating the Probability that a Job Schedule Survives Contention

A good reservation is not only one that is likely to survive resource contention locally.

A good reservation should also leave enough room to other operations in the same job

(i.e. same process routing) so that they too can be allocated good reservations. Such

good reservations can be identified by estimating for each remaining reservation (of the

operation to schedule) the expected number of compatible job schedules that are likely to

survive resource contention (which, in short, will be referred to as the expected number

of survivable schedules). When some operations in the job have already been scheduled,

rather than looking at the entire job, it is sufficient to look at the relaxation comprised of

all unscheduled operations that can be reached from the current (critical) operation via

precedence constraints without visiting a scheduled operation. The goodness of a

reservation is then determined by the expected number of survivable solutions to this

relaxation. Indeed unscheduled operations that are completely separated from the current

(critical) operation by already scheduled operations will not be affected by the

reservation assigned to the current operation.

In order to proceed, a few notations need to be defined:

l• O : the current critical operation (i.e. the operation selected to be scheduledi

next);

l• ρ: one of O ’s remaining reservations;i

l l• RELAX ⊆ O : the set of operations making up the relaxation used by thei
lheuristic. This set consists of O and the unscheduled operations that can bei

lreached from O via precedence constraints without visiting a scheduledi

operation;

l l• good (ρ): the goodness of assigning ρ to O , expressed as the expectedi i

number of survivable solutions to the relaxation;

l• comp (ρ): the set of solutions to the relaxation that are compatible with thei
lassignment of ρ to O ;i

N. SADEH

56 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

l• sol ∈ comp (ρ): a solution to the relaxation that is compatible with thei
lassignment of ρ to O ;i

l l l• ρ (O | sol) : the reservation assigned to an operation O ∈ RELAX in solutionk k i

sol.

Assuming that the probability that a solution sol survives resource contention can be
lapproximated by the product of the probabilities that each reservation ρ (O | sol) in solk

lsurvives contention, the goodness of assigning ρ to O is:i

l l lgood (ρ) = surv (ρ(O | sol)) (3.4)∑ ∏i k k
l l lsol ∈ comp (ρ) O ∈ RELAXi k i

This independence assumption is equivalent to omitting the interactions induced by

precedence constraints in other jobs. It generally appears to be sufficient, as suggested by

the results presented in the following section. Notice that, as a consequence of this

assumption, the only reservation survivabilities that need to be computed in each search
l lstate are those of operations in RELAX ⊆ O , i.e. a subset of the operations in the job toi

which the critical operation belongs. Formula (3.4) can be rewritten to separate the
lsurvivability of reservation ρ from those of the other operations in RELAX :i

l l l lgood (ρ) = surv (ρ) × surv (ρ(O | sol)) (3.5)∑ ∏i i k k
l l l lsol ∈ comp (ρ) O ∈ RELAX \ {O }i k i i

This can be further rewritten as:

l l lgood (ρ) = surv (ρ) × compsurv (ρ) (3.6)i i i

l lwhere compsurv (ρ) is the number of solutions compatible with the assignment of ρ to Oi i
l lthat are expected to survive contention at operations in RELAX \ {O };i i

l l lcompsurv (ρ) = surv (ρ(O | sol))∑ ∏i k k
l l l lsol ∈ comp (ρ) O ∈ RELAX \ {O }i k i i

l l lcompsurv (ρ) is only a function of the start time st allocated to O in reservation ρ.i i i

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 57

lIn tree-like process routings, it is possible to evaluate compsurv (ρ) for all the possiblei
lstart times of O in O(ν k) steps, where ν ≤ n is the number of operations in relaxationi l l l

lRELAX , and k the maximum number of possible reservations of an operation. This isi

done using a dynamic programming procedure described in appendix A. This technique
29is an adaptation of a procedure described in [Dechter 88] . For non-tree-like process

plans, it should be possible to remove a small number of precedence constraints (e.g.

precedence constraints that are not on a critical path) to transform the process routing into

a tree-like one, and use the resulting relaxation to compute goodness measures.

3Reservation Goodness for O3

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00

jo
b

 s
ch

ed
u

le
s

0 1 2 3 4 5 6 7 8 9 10 11 12
start time

3Figure 3-10: Value goodness for O expressed as the number of3
compatible job schedules expected to survive resource contention.

3In the example discussed earlier, the critical operation is O . Since no operation has3

been scheduled yet, the relaxation used by the heuristic consists of all three operations in

job j . Figure 3-10 displays the goodness measures computed using (3.6). Start time3
3st =6 for instance is only compatible with one solution to the relaxation, namely a3

3 3solution in which st =3 and st =0. Therefore, the goodness of this start time is given by:2 1
3 3 3 3 3 3 3good(st =6)= surv (st =0) × surv (st =3) × surv (st =6). On the other hand, start time3 1 1 2 2 3 3

29 2The complexity of Dechter’s procedure is O(ν k) for general tree-like CSPs. Here we have furtherl
reduced this complexity to O(ν k) by taking advantage of the linearity of precedence constraints. If thel
model was to allow for other temporal constraints such as those described in [Allen 83], the complexity of

2the algorithm would be O(ν k).l

N. SADEH

58 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

3 3 3st =7 is compatible with three solutions to the relaxation, one with st =3 and st =0, one3 2 1
3 3 3 3with st =4 and st =0, and one with st =4 and st =1. The survivability of this start time2 1 2 1

was obtained by adding the survivabilities of each of these three solutions.

3Start time st =12 is the one compatible with the largest number of solutions to the3

relaxation that are expected to survive contention, hence this is the start time selected by
3this value ordering heuristic. By assigning this start time to O , and iteratively applying3

the variable and value ordering heuristics that were just described, the micro-

opportunistic scheduler easily completes the schedule without backtracking. This

problem is relatively easy, and is also solved without backtracking by Keng and Yun’s

heuristic.

No heuristic is perfect. Although our value ordering heuristic recommends the right start
3time, a careful analysis reveals for instance that its second best choice, namely st =11, is3

actually infeasible. Notice however that, in the absence of backtracking, the scheduler

does not need to try the second best value recommended by the heuristic: it is enough for

the first value to be good.

3.5.4.3. Further Refinement

lFor some reservations ρ, compsurv (ρ) can be very large, and can start having too muchi
linfluence in (3.6) compared to surv (ρ). Consider the following two reservations ρ andi 1

ρ :2
l l• ρ : compsurv (ρ)=1000 and surv (ρ)=0.5i i1 1 1

l l• ρ : compsurv (ρ)=200 and surv (ρ)=1.0i i2 2 2

Ideally, a good value ordering heuristic should recognize that reservation ρ is better than2
lreservation ρ , despite the fact that, according to Equation (3.6), good (ρ)=500 is largeri1 1

lthan good (ρ)=200. Indeed, in this example, it does not really matter whetheri 2
lcompsurv (ρ) equals 200 or 1000: in either case there will certainly be enoughi

compatible schedules. Instead, the factor that really matters here is the survivability of the

reservation itself (i.e. locally). In the experiments reported at the end of this chapter, this

problem was handled by filtering the number of survivable solutions compatible with a
lreservation ρ, compsurv (ρ). Instead of relying on Equation (3.6), the system computedi

goodness measures with the following revised formula:

l l lν −1lgood (ρ) = surv (ρ) × MIN(Φ ,compsurv (ρ)) (3.7)i i i

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

NEW VARIABLE AND VALUE ORDERING HEURISTICS 59

where MIN denotes the minimum function and Φ is a parameter of the system that is
ν −1lempirically adjusted. By using a filter of the form Φ , the heuristic attempts to ensure

that, on the average, each one of the ν −1 other operations in the relaxation has Φl

survivable reservations.

The resulting heuristic will be referred to as FSS, which stands for "Filtered Survivable
30Schedules" (value ordering) heuristic .

3.6. Overall Complexity

In each search state, the worst-case complexity of the look-ahead analysis is

O(max(Nk ,Hm)), where N is the number of unscheduled operations in the current search

state, k the maximum number of reservations left to an operation in that state, H the

scheduling horizon, and m the number of resources in the system. In general O(Nk)

appears to be the dominant factor. In the absence of backtracking (i.e. the number of

search states generated by the system is equal to the number of operations to be
2scheduled), the overall complexity of the approach is O(NOP k), where NOP denotes the

total number of operations to be scheduled. Experimentation with problems of different

sizes suggests that, in the absence of backtracking, this is the true complexity of the

approach. When backtracking occurs the overall complexity of the procedure can be

much higher, though it is not often the case.

3.7. Empirical Evaluation

This section reports the results of an experimental study comparing the ORR variable

ordering heuristic and FSS value ordering heuristic against the DSR (Dynamic Search

Rearrangement) variable heuristic (DSR) [Bitner 75, Haralick 80, Purdom 83], the ABT

(Advised Backtracking) value ordering [Dechter 88], and the combination of variable and

value ordering heuristics developed by Keng and Yun [Keng 89] (and referred to as

SMU). Experiments in which the granularity of the micro-opportunistic approach was

increased.

l30A more sophisticated way to filter compsurv (ρ) would consist in filtering the number of compatiblei
reservations of each operation in the relaxation. This would ensure that each one of the operations in the
relaxation has enough compatible reservations. In general, because the critical operation is also the one in
the relaxation whose reservations are the least survivable, a single filter for all the other operations in the
relaxation seems sufficient.

N. SADEH

60 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

3.7.1. Design of the Test Data

A set of 60 scheduling problems was randomly generated, each with 5 resources and 10

jobs of 5 operations each (i.e. a total of 50 operations per problem). Each job had a linear

process routing specifying a sequence in which the job had to visit each one of the five

resources. This sequence was randomly generated for each job, except for bottleneck

resources, which were each visited after a fixed number of operations (in order to further

increase resource contention).

Two parameters were adjusted to cover different scheduling conditions: a range

parameter, RG, controlled the distribution of job due dates and release dates, and a

bottleneck parameter, BK, controlled the number of major bottleneck resources. Six

groups of ten problems were randomly generated, by considering three different values of

the range parameter and two different bottleneck configurations. The value of a third

parameter, which will be referred to as the slack parameter, S, had to be adjusted in

function of the first two in order to keep demand for bottleneck resource(s) close to 100%
31over the major part of each problem .

The three parameters were set as follows:

• Range Parameter (RG): this parameter controlled the release date and due

date distributions in each problem. Due dates were randomly drawn from a

uniform distribution (1+ S) MU(1 − RG, 1), where U(a,b) represents a

uniform probability distribution between a and b, M is an estimate of the

minimum makespan of the problem, and S is the slack parameter, which is

defined below in function of BK and RG. The minimum makespan of the

Rmproblem was estimated as M =(n − 1) d u + d u , where n is the∑R RR = Rbtnk 1

number of jobs, m the number of resources, R the main bottleneckbtnk

resource (or one of them if there are several) and d u denotes the averageRi

duration of the operations requiring resource R . This estimate was firsti

suggested in [Ow 85]. Similarly, release dates were randomly drawn from a

uniform distribution of the form: (1+ S) M U(0 , RG). Three values of the

31If this parameter had been fixed while the other parameters varied, a large proportion of the problems
would have been either infeasible or trivial.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

EMPIRICAL EVALUATION 61

32range parameter were used to generate problems : RG=0.0 ,0.1 , and 0.2.

• Bottleneck Parameter (BK): In half of the problems, there was only one

major bottleneck (BK =1), while in the other half there were two major

bottlenecks (BK =2).

• Slack Parameter (S): For problems with 2 bottlenecks or jobs with

different release dates and due dates, the length of the problem was increased

to (1+ S) M so that most problems remained feasible. The slack parameter

was empirically set as S=0.1 × (BK− 1)+ RG. At the same time, these values

of the slack factor generally maintained demand for the bottlenecks close to

100% over the major part of each problem.

Finally, operation durations were randomly drawn from two different distributions,

depending on whether the operation required a bottleneck resource or not. Bottleneck

operations had durations randomly drawn from a uniform distribution U(8 , 16) whereas

non-bottleneck operations had their durations randomly drawn from a uniform

distribution U(3,11). As a consequence, operations in these problems had a bit over 100

possible start times (i.e. values) after applying the consistency checking procedure to the

initial search state.

3.7.2. Comparison Against Other Heuristics

Five combinations of variable and value ordering heuristics were compared:

• DSR & ABT: the Dynamic Search Rearrangement heuristic combined with

the Advised BackTracking [Dechter 88] value ordering heuristic. The

version of ABT used in these experiments was one based on the same

predetermined tree-like relaxation as FSS, namely it used the process routing

to which the current operation belonged. This version of ABT was carefully

implemented to run in O(ν k) steps in each search state (where ν is thel l

32Due to the moderate size of the scheduling problems considered here, larger values of RG quickly tend
to produce less resource contention. This is also because the slack parameter S is increased when RG
becomes larger, in order to keep from generating infeasible problems.

N. SADEH

62 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

number of operations in the tree-like relaxation and k the maximum number

of remaining start times of an operation after consistency checking). This
33was done using a procedure similar to the one implemented in FSS .

• DSR & FSS: the DSR heuristic combined with the Filtered Survivable

Schedules (FSS) value ordering heuristic (with Φ =2.5).

• ORR & ABT: the Operation Resource Reliance (ORR) variable ordering

heuristic together with the ABT value ordering heuristic.

• ORR & FSS: The ORR and FSS heuristics (with Φ =2.5) advocated in this

chapter.

• SMU: The variable and value ordering heuristics developed by Keng and

Yun at the Southern Methodist University [Keng 89].

All combinations of variable and value ordering heuristics were run in a modular

testbed in which all common functions were shared (e.g. consistency enforcing module,

backtracking module, etc), and unnecessary functions were bypassed whenever possible

(e.g. the construction of demand profiles was bypassed in DSR&ABT). All functions

were implemented with equal care.

On each problem, search was stopped if it required more than 1,000 search states. The

performance of each combination of variable and value ordering heuristics was compared

along 3 dimensions:

1. Search efficiency: the ratio of the number of operations to be scheduled

over the total number of search states that were explored. In the absence of

backtracking, only one search state is generated for each operation, and

hence search efficiency is equal to 1.

33An implementation of ABT using MST relaxations would have been too slow to be competitive. It
would have required computing constraint satisfiabilities and identifying an MST relaxation in each search
state. Additionally, the time required to count the number of solutions to a general MST relaxation would

2have been O(ν k).l

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

EMPIRICAL EVALUATION 63

2. Number of experiments solved in less than 1,000 search states each.

3. Average CPU time per operation (in seconds): this is the average CPU

time required to successfully schedule an operation on a DECstation 3100

running Knowledge Craft on top of Allegro Common Lisp. This measure

was obtained by dividing the total CPU time by the number of operations to

be scheduled.

The results in Table 3-1 indicate that DSR is generally not sufficient to solve realistic

job shop scheduling problems. Combined with ABT, this heuristic was only able to solve

31 problems out of 60 in less than 1,000 search states each. Even when combined with

the FSS value ordering heuristic, DSR only achieved a search efficiency of 56%, and

failed to solve 27 problems out of 60 in less than 1,000 search states. These results not

only suggest that job shop scheduling requires a dynamic variable ordering heuristic (see

also the results in the following subsection). They also indicate that the variable ordering

heuristics proposed so far in the CSP literature are often too shallow for problems such as

job shop scheduling. After replacing DSR with ORR in combination with ABT, search

efficiency went up by 20% and 12 additional problems were solved in less than 1,000

search states each. The SMU heuristic achieved a higher efficiency of 71% and solved

43 problems out of 60 in less than 1,000 states. Even this heuristic had trouble solving

many problems. In fact, it was not able to solve more problems than ORR&ABT.

ORR&FSS, the variable and value ordering heuristics advocated in this chapter, yielded

an impressive 85% search efficiency, and solved 52 problems out of 60 in less than 1,000

search states. Simultaneously this heuristic combination also achieved important

speedups over all the other heuristics. Notice that the set of problems that ORR&FSS

was not able to solve in less than 1,000 search states includes problems with

RG=0.0,BK=1 and S=1, namely problems that require scheduling all jobs within the

expected minimum makespan of the problem. In fact, it is possible that a couple of these

problems were infeasible.

On problems with larger numbers of operations, the savings achieved by ORR&FSS

appear to become even more important, although the poor performance of the generic

CSP heuristics precluded systematic experimentation with such problems. At the current

time, ORR&FSS has been successfully applied to several hundred scheduling problems,

including a large number of problems with 100 operations, approximately 300 possible

N. SADEH

64 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

Performance of Five Heuristics

DSR DSR ORR SMU ORR
&ABT &FSS &ABT &FSS

Search 0.70 0.81 0.96 1.00 0.96
Efficiency (0.43) (0.40) (0.06) (0.00) (0.07)

RG=0.2 Nb. exp. solved 8 8 10 10 10
BK=1 CPU seconds 20.02 13.22 2.59 6.19 3.12

(30.17) (19.16) (0.25) (0.52) (0.36)

Search 0.49 0.72 0.52 0.78 0.99
Efficiency (0.44) (0.46) (0.42) (0.40) (0.02)

RG=0.2 Nb. exp. solved 7 7 6 8 10
BK=2 CPU seconds 28.64 14.11 25.16 14.76 3.31

(32.22) (15.84) (28.23) (16.54) (0.21)

Search 0.59 0.81 0.79 0.62 0.77
Efficiency (0.46) (0.40) (0.37) (0.49) (0.39)

RG=0.1 Nb. exp. solved 8 8 9 6 8
BK=1 CPU seconds 16.34 7.62 9.04 18.71 14.37

(18.97) (7.86) (15.23) (16.15) (23.70)

Search 0.18 0.43 0.47 0.70 0.87
Efficiency (0.29) (0.49) (0.47) (0.45) (0.31)

RG=0.1 Nb. exp. solved 3 4 6 7 9
BK=2 CPU seconds 32.59 12.11 31.60 14.00 6.04

(17.91) (8.20) (32.76) (12.44) (9.61)

Search 0.24 0.29 0.51 0.43 0.72
Efficiency (0.40) (0.40) (0.46) (0.49) (0.46)

RG=0.0 Nb. exp. solved 2 3 7 4 7
BK=1 CPU seconds 34.84 25.44 25.69 26.37 18.49

(17.51) (16.56) (29.44) (17.71) (25.62)

Search 0.27 0.34 0.43 0.74 0.81
Efficiency (0.36) (0.46) (0.42) (0.43) (0.40)

RG=0.0 Nb. exp. solved 3 3 5 8 8
BK=2 CPU seconds 28.30 21.29 28.00 14.77 11.00

(23.52) (14.82) (27.32) (17.33) (16.73)

Search 0.41 0.56 0.61 0.71 0.85
Efficiency (0.43) (0.47) (0.42) (0.43) (0.32)

Overall Nb. exp. solved 31 33 43 43 52
Performance CPU seconds 26.79 15.86 20.34 15.80 9.42

(24.00) (15.03) (26.11) (15.35) (16.65)

Table 3-1: Comparison of 5 heuristics over 6 sets of 10 job shop problems.
Standard deviations appear between parentheses.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

EMPIRICAL EVALUATION 65

start times per operation, and bottleneck loads close to 100% over the major part of each

problem. The heuristics have also been run on a smaller set of problems with 200

operations. Backtracking remained very low on most of these problems.

3.7.3. Varying the Granularity of the Approach

A second set of experiments was carried out in order to evaluate the impact of the

granularity of the micro-opportunistic search procedure on the ability of the system to

achieve high search efficiency. Indeed, important computational savings could possibly

be realized if it were possible to achieve as high a search efficiency without having to

revise the search procedure in each search state.

Two variations of the micro-opportunistic scheduler based on the ORR and FSS

heuristics were implemented. These two variations differed from the original version in

the number , G, of operations that had to be scheduled before the scheduler was allowed

to look for a new critical resource/time interval, i.e. before the scheduler was allowed to

revise its current search strategy. For G > 1, the G operations with the largest reliance on

the current critical resource/time interval were scheduled one by one in decreasing order

of their reliance.

Impact of the Granularity on Performance

G=3 G=2 G=1

Search Efficiency 0.70 0.76 0.85
(0.41) (0.38) (0.32)

Nb. exp. solved 46 48 52

CPU seconds 14.19 13.51 9.42
(19.17) (20.74) (16.65)

Table 3-2: Varying the granularity of the approach.
Standard deviations appear between parentheses.

Table 3-2 compares the overall performance of the micro-opportunistic scheduler

(G=1) against two coarser variations (G =2 and G=3) over the same set of 60 scheduling

problems. The results indicate that the performance of the procedure quickly degrades as

its granularity increases, thereby suggesting that all the flexibility of the micro-

opportunistic search procedure is actually required to efficiently solve these types of

problems. Notice also that, even with G=3, ORR&FSS outperforms all other four

heuristic combinations studied in the previous subsection.

N. SADEH

66 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

3.8. Summary and Conclusions

This chapter studied a variation of the job shop scheduling problem in which operations

have to be performed within one or several non-relaxable time windows. Examples of

such problems include factory scheduling problems in which some operations have to be

performed within one or several shifts, spacecraft mission scheduling problems, some

factory rescheduling problems, or any other scheduling problem with hard deadlines.

These types of scheduling problems cannot be solved with traditional scheduling

techniques such as priority dispatch rules or similar one-pass scheduling techniques.

Mixed Integer Programming techniques which could potentially deal with these problems

have been overwhelmed so far by the combinatorial number of binary variables required

to account for limited resource capacities [Nemhauser 88]. Instead, this chapter

demonstrated that many instances of these problems can be efficiently solved within the

micro-opportunistic search paradigm by combining consistency enforcing techniques and

look-ahead techniques to decide which operation to schedule next and which reservation

to assign to that operation. Experiments in which the granularity of the micro-

opportunistic procedure was increased indicate that the ability of the micro-opportunistic

approach to constantly revise its search strategy is instrumental in efficiently solving

many of these problems.

Several variable and value ordering heuristics to guide the micro-opportunistic

scheduler were successively studied, including both generic heuristics which had been

reported to perform particularly well on other CSPs and specialized heuristics developed

for similar scheduling problems. The review indicated that generic CSP heuristics are

usually not sufficient to solve hard CSPs such as job shop scheduling. This is because

these heuristics fail to properly account for the constraint interactions induced by the high

connectivity of the constraint graphs typically encountered in job shop scheduling.

Instead, a new probabilistic model of the search space was introduced which allows to

estimate the reliance of an operation on the availability of a reservation, and the degree of

contention among unscheduled operations for the possession of a resource over some

time interval. Based on this probabilistic model, new variable and value ordering

heuristics were defined:

1. The "Operation Resource Reliance" (ORR) variable ordering heuristic

selects the operation that relies most on the most contended resource/time

interval, and

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SUMMARY AND CONCLUSIONS 67

2. The "Filtered Survivable Schedules" (FSS) value ordering heuristic assigns

to that operation the reservation which is expected to be compatible with

the largest number of survivable job schedules, i.e. job schedules that are

expected to survive resource contention.

Experimental results show that these two heuristics enable the micro-opportunistic

scheduler to efficiently solve many job shop scheduling problems that could not be

efficiently solved by prior heuristics (both generic CSP heuristics and specialized

heuristics designed for similar scheduling problems). The results also indicate that the

ORR and FSS heuristics not only yield significant increases in search efficiency but also

achieve important reductions in search time.

The estimates of resource contention used in the ORR and FSS heuristics are based on

several independence assumptions. More sophisticated versions of these heuristics have

also been implemented, which attempt to better account for different dependencies, some

using more complex analytical models [Sadeh 88, Sadeh 89a, Sadeh 90] others relying on

Monte Carlo simulations [Sadeh 89b]. The increase in search efficiency generally

achieved by these more sophisticated versions did not seem to justify their heavier

computational requirements.

Our experimental study suggests that there remains a small number of particularly

difficult problems that cannot be solved efficiently by the ORR and FSS heuristics (or by

any of the other heuristics that were tested). Because job shop scheduling is NP-

complete, this is likely to always be the case. Nevertheless, more powerful variable and

value ordering heuristics may allow to further reduce the number of problems that cannot

be solved efficiently. Alternatively, new more powerful consistency enforcing

techniques or more sophisticated deadend recovery schemes could also further improve

the efficiency of the micro-opportunistic approach.

The heuristics presented in this chapter are intended for job shop scheduling problems,

i.e. scheduling problems with both precedence and capacity constraints. The probabilistic

measures of reliance and contention that were described can be used in any resource

allocation problem, and more generally any CSP with disequality constraints (i.e.

constraints preventing two variables from being assigned the same value), since these

problems can be formulated as resource allocation problems (e.g. the N-queens problem

can be formulated as a resource allocation problem in which each queen/row is a task and

N. SADEH

68 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

34each column is a resource). However, the lessons learned from this work go beyond

job shop scheduling and resource allocation problems. Fundamental weaknesses of

generic variable and value ordering heuristics often praised in the CSP literature were

identified. Variable ordering heuristics like DSR count the number of values left to each

variable but do not account for the chances that these values remain available in the

future. Variable ordering heuristics like MW or MC count the number of constraints

incident on a variable but do not account for the tightness of these constraints. Value

ordering heuristics like ABT assume that the problem admits a tight tree-like relaxation.

The probabilistic model of the search space used to define the ORR and FSS heuristics

allows to overcome these weaknesses by providing a framework in which more

sophisticated approximations of variable criticality and value goodness can be defined.

For instance, the ORR and FSS heuristics rely on efficient probabilistic approximations

of resource contention. These measures of resource contention enable the scheduler to

account for entire cliques of capacity constraints rather than rely on advice based on tree-

like relaxations of these cliques. Last but not least, this work suggests that benchmark

problems often used in the CSP literature are not representative of hard problems such as

job shop scheduling. It is hoped that this dissertation will prompt researchers in the field

to look for new benchmark problems and new more powerful heuristics for these

problems.

The heuristics discussed in this chapter all share a common weakness: they always

perform the same analysis independently of the problem that they are presented, and

regardless of the difficulty of the current search state. A more flexible approach would

allow for different heuristics to be used according to the difficulty of the problem and

even according to the difficulty of the current search state. One such mechanism was

implemented in an earlier version of the system which relied on Monte Carlo sampling to

measure resource contention. Because, the system measured resource contention between

feasible job schedules, it was possible to accurately determine if the system had reached a

search state in which backtracking could no longer occur. Because, like ORR, the

variable ordering heuristic implemented in that version of the system was particularly

good at quickly reducing contention, such search states were generally reached after 30 to

60% of the operations had been scheduled. At that point, the system would arbitrarily

34Constraints representing the ability of queens to attack each other along diagonals can be represented
as constraints further restricting admissible resource assignments.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SUMMARY AND CONCLUSIONS 69

complete the schedule (i.e. using arbitrary variable and value orderings), which generally
35resulted in important speedups . This dynamic switch could also be implemented in the

current version of the system, though it would be less accurate. Similarly, different

consistency enforcing techniques could be applied to different problems, different search

states, or even to different parts of a same problem (e.g. enforcing higher consistency

levels with respect to capacity constraints at the bottlenecks). Preliminary

experimentation with such flexible consistency enforcing techniques have been reported

by Collinot and Le Pape [Collinot 90].

The next chapter deals with another variation of the job shop scheduling problem, in

which the objective is not only to come up with a feasible schedule as fast as possible but

also to produce as good a schedule as possible. The domain of application is factory

scheduling.

35Consistency enforcement was still carried out in each search state, and was at that point sufficient to
guarantee (within the accuracy of the Monte Carlo sampling method) backtrack-free search.

N. SADEH

70 THE JOB SHOP CONSTRAINT SATISFACTION PROBLEM

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

71

Chapter 4

Factory Scheduling: A Constrained Optimization Problem

4.1. Introduction

36This chapter describes MICRO-BOSS , a micro-opportunistic factory scheduling

system. The factory scheduling problem is a particularly difficult Constrained

Optimization Problem. Attempts to build optimal solutions to any slightly realistic
37version of this problem have all failed so far . Like in any other heuristic approach to

this problem, the objective in MICRO-BOSS is to efficiently come up with as good a

solution as possible. MICRO-BOSS differs however from many earlier approaches in at

least two important ways:

1. A micro-opportunistic approach: While earlier approaches to factory

scheduling such as those embedded in ISIS, OPT, and OPIS have relied on

coarse problem decompositions in which large resource subproblems or

large job subproblems are scheduled one by one, the search procedure in

MICRO-BOSS allows each operation to be considered as an independent

decision point. Experimental results presented in Chapter 5 indicate that

this extra flexibility in the search procedure yields significantly better

schedules.

2. A more realistic cost model: Many scheduling techniques have been

developed that focus on minimizing makespan (i.e. maximizing resource

utilization) without taking care of meeting job due dates, or attempt to meet

job due dates without paying attention to inventory costs. MICRO-BOSS

36MICRO-BOSS is an acronym for Micro-Bottleneck Scheduling System.

37See the review in Chapter 1.

N. SADEH

72 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

uses a more realistic cost model that directly accounts for the tardiness

costs, in-process inventory costs, and finished-goods inventory costs

introduced by each job. This model is intended to allow for the production

of just-in-time schedules [Voss 87], and was influenced by a similar cost

model developed by Morton et al. in the context of the SCHED-STAR

system [Morton 88].

The emphasis of this chapter is on look-ahead techniques that enable MICRO-BOSS to

continuously track the evolution of highly contended resource/time intervals during the

construction of the schedule. Like in the CSP approach described in the previous chapter,

these look-ahead techniques help the scheduler decide which operation to schedule next

and which reservation to assign to that operation. However, because the objective in this

chapter is not simply to come up with a feasible solution as fast as possible, but rather to

efficiently come up with a solution that minimizes schedule costs, the notions of critical

operation and promising reservation are different. In this chapter, it is argued that a

critical variable in a COP is one that participates in an important tradeoff (e.g. a couple of

jobs with important tardiness costs that all require the same resource at the same time in

order to meet their due dates). A promising value for that variable is one that will

optimize this tradeoff. It is shown that the probabilistic model introduced in Chapter 3

for the job shop CSP can be extended to identify operations participating in important

tradeoffs by building demand profiles that are biased towards those reservations expected

to produce the best schedules.

The next section provides a formal definition of the factory scheduling model

hypothesized in this chapter. The following sections describe the look-ahead technique

used in MICRO-BOSS to decide which operation to schedule next and which reservation

to assign to that operation. Experimental results comparing MICRO-BOSS against

several other scheduling techniques as well as against different variations of the

scheduler itself are presented in Chapter 5.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

INTRODUCTION 73

4.2. Problem Definition

38The job shop scheduling problem requires scheduling a set of jobs J ={ j , ... , j } on a1 n

set of physical resources RES={ R , ... ,R } . Each job j consists of a set of operations1 m l
l llO ={ O , ... ,O } to be scheduled according to a process routing that specifies a partial1 nl

l lordering among these operations (e.g. O BEFORE O). This chapter assumes factoryi j

scheduling problems with in-tree process routings, in which operations can have several

direct predecessors but at most one direct successor (i.e. assembly-type of process

routings). Figure 4-1 displays two examples of in-tree process routings.

precedence constraint

O1

1

O
1

3

O
1

2

O
1

5

O1

4
O

1

6

O
2

1 O
2

2 O2

3

j
1

j
2

Figure 4-1: Two examples of in-tree process routings.

Additionally a job j has an earliest acceptable release date erd , a due-date dd , and al l l

latest acceptable completion date lcd . It is assumed that, for each job j , lcd ≥ dd ≥ erd .l l l l l

Each job has to be scheduled between its earliest acceptable release date and latest

38The scheduling model defined in this section is very close to the one used in the previous chapter. For
the sake of completeness, the model is entirely redefined here. Notice however the following differences
with the previous chapter: the introduction of costs to be minimized, the restriction to in-tree process
routings instead of tree-like process routings, and the restriction to problems where operations have a single
resource requirement, for which there is no alternative.

N. SADEH

74 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

acceptable completion date. The earliest acceptable release date may correspond to the

earliest possible arrival date of raw materials or to a rough release date provided by a

master scheduling module. It is assumed that the actual release date will be determined

by the schedule to be constructed. The latest acceptable completion date may correspond

to a date after which the customer will refuse delivery. If such a date does not actually

exist, it can always be chosen far enough in the future so that it is no longer a constraint.

l l lEach operation O has a fixed duration, du , and a start time, st (to be determined),i i i
lwhose domain of possible values is delimited by an earliest start time, est , and a latesti

lstart time, lst (initially derived from the job’s earliest acceptable release date erd andi l

latest acceptable completion date lcd). In order to be successfully executed, eachl
l l loperation O requires a resource R (e.g. R = R , a milling machine).i i i 1

More formally, the problem can be defined as follows:

VARIABLES:

lThe variables of the problem are the operation start times, st (1 ≤ l ≤ n , 1 ≤ i ≤ n).i l

CONSTRAINTS:

The non-unary constraints of the problem are of two types:

1. The precedence constraints defined by the process routings translate into
l l l l llinear inequalities of the form: st + du ≤ st (i.e. O BEFORE O).i i j i j

2. The capacity constraints that restrict the use of each resource to only one

operation at a time translate into disjunctive constraints of the form:
k l k k l l l kR ≠ R ∨ st + du ≤ st ∨ st + du ≤ st . These constraints simply expressi j i i j j j i

k lthat, unless they use different resources, two operations O and O cannoti j

overlap.

As mentioned earlier, each job has to be performed between its earliest acceptable release

date and latest acceptable completion date. Time is assumed discrete. Operation start

times and end times can only take integer values. The model also allows for any type of

unary constraint that further restricts the set of possible start times of an operation.

Resources can also be unavailable over some prespecified time intervals (e.g. night shifts,

week-ends, time intervals reserved for maintenance, etc.).

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

PROBLEM DEFINITION 75

COSTS:

Each job j has:l

• a marginal tardiness cost, tard : the cost incurred for each unit of time that the job isl

tardy (i.e. completes past its due date). Marginal tardiness costs generally include
39tardiness penalties, interests on lost profit, loss of customer goodwill, etc . The total

tardiness cost of job j , in a given schedule, is:l

TARD = tard × Max(0 , C − dd) (4.1)l l l l

l l lwhere C = st + du is the completion date of job j in that schedule, assuming that O isn n nl ll l l

the last operation in job j .l

l• marginal in-process and finished-goods inventory costs: Each operation O cani
lincrementally introduce its own non-negative marginal inventory cost, inv . Typically,i

the first operation in a job introduces marginal inventory costs that correspond to interests

on the costs of raw materials, interests on processing costs (for that first operation), and
40marginal holding costs. Downstream operations introduce additional marginal

inventory costs in the form of interests on processing costs or interests on the costs of

additional raw materials required by these operations. The total inventory cost for a job

j , in a given schedule, is:l
nl

l lINV = inv × [Max(C ,dd) − st] (4.2)∑ i il l l
i=1

Notice that, for the sake of simplicity, inventory costs are always counted from the start
41time of the operation that introduces them .

39In this model, extra inventory costs incurred past the due date are not accounted for in the tardiness
costs. Instead they are accounted for in the inventory costs described below.

k k40An operation O is said to be downstream (upstream) of another operation O , within the same job, ifi j
k k

O is a direct or indirect successor (predecessor) of O in that job, as defined by its process routing.i j

41Some costs such as direct holding costs are typically incurred after the operation is completed.
However, since each operation is assumed to have a fixed duration, this simplification is equivalent to
adding a fixed cost to the total schedule cost. In other words, the difference between the costs of two
schedules is not affected by this simplification.

N. SADEH

76 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

Inventory costs can be decomposed into in-process and finished-goods inventory costs:
n nl l

l l lINV = [inv × (C − st)] + (inv) × Max(0, dd − C) (4.3)∑ ∑i i il l l l
i=1 i=1

Sometimes, it is also convenient to rewrite (4.2) as:
n − 1l

l l lINV = [(inv) × (st − st)] (4.4)∑ ∑ k succ(i) il
li=1

k ∈ BEFi
nl

l+ (inv) × [Max(C ,dd) − st]∑ ni l l li = 1

l l l l lwhere BEF = {i} ∪ {k |O is upstream of O in j } and O is the direct successor of Oi k i succ(i) il

(1 ≤ i < n). This last equation emphasizes the cumulative effect of the marginall
linventory costs incrementally introduced by each operation preceding O in j . Every uniti l

l lof time that operation O is delayed after O has been completed results in ansucc(i) i

loverhead inventory cost of inv .∑ k
l

k ∈ BEFi
The total cost of a schedule is obtained by summing the cost of each job schedule:

n

Schedule Cost = (TARD + INV)∑ l l
l=1

OBJECTIVE:

The goal of the scheduler is to efficiently produce a feasible schedule that reduces as

much as possible the total schedule cost.

EXAMPLE:

These costs are now illustrated with the small scheduling problem introduced in Chapter

1, and depicted again in Figure 4-2. This example will also be used throughout this

chapter to illustrate the look-ahead mechanisms implemented in MICRO-BOSS.

Each square box in Figure 4-2 represents an operation. Each box is labeled with the
1name of the operation that it represents (e.g. O), the duration of that operation (e.g.1

1 1du = 2), and its resource requirement (e.g. R = R). The arrows represent precedence1 1 1

constraints. The other arcs in the graph represent capacity constraints. The earliest

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

PROBLEM DEFINITION 77

3O1

3
R

5

2O1

5
R

4
2O 1

4
R

3
2O1

1
R

1
6O1

2
R

2
j

1

5O2

2
R

2
7O2

1
R

1
j

2

j
3

3O4

2
R

23O 4

1
R

4
j

4

precedence constraint

capacity constraint

3O3

3
2O

3

2
R

11O3

1
R

3
R

2

l l l l lJob j erd dd lcd tard inv inv inv inv inv1 2 3 4 5l l l l l

j 0 12 20 20 2 1 2 0 01

j 0 14 20 20 5 0 - - -2

j 0 9 20 5 1 0 0 - -3

j 0 18 20 10 1 0 - - -4

Figure 4-2: A simple job shop problem with 4 jobs. Each node is labeled
by the operation that it represents, its duration, and the resource

that it requires. The earliest acceptable release date, due date, and
latest acceptable completion date of each job is provided in the

table along with marginal tardiness and inventory costs.

acceptable release date, due date, and latest acceptable completion date of each job is

N. SADEH

78 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

provided in the table along with marginal tardiness and inventory costs. Once again,

notice that R is the only resource required by four operations (one from each job).2

Notice also that, in three out of four jobs (namely j ,j , and j), the operation requiring1 3 4

R is one of the job’s longest operations. Consequently resource R can be expected to2 2

be the main bottleneck of the problem. To some extent, resource R constitutes a1

secondary bottleneck.

O
1

3

0 2 4 6 8 10 12 14 time

First Schedule

0 2 4 6 8 10 12 14 time

Second Schedule

0 2 4 6 8 10 12 14 time

Third Schedule

O
1

3

O1

1
O1

2
O1

4
O1

5

O1

2
O1

4
O1

5
O1

1

O1

4
O1

1
O1

2
O1

5

O
1

3

Figure 4-3: Three possible schedules for j .1

Figure 4-3 depicts three possible schedules for job j . In the first schedule, job j is1 1

completed at time 15, i.e. 3 time units past its due date. According to Equation (4.1), the

tardiness cost incurred by job j in that schedule is TARD =20 × 3=60, and the inventory1 1

cost, using Equation (4.2), is INV =2 × 14 + 1 × 12 + 2 × 14 = 68. The total cost1

incurred by j would therefore be 60 + 68 = 128. In the second schedule, job j completes1 1

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

PROBLEM DEFINITION 79

at the same time. Its tardiness cost is therefore the same as in the first schedule. Its
1inventory cost is lower, since all the operations preceding O have been compactly5

scheduled before that operation. In this second example,

INV =2 × 12 + 1 × 10 + 2 × 7 = 48. Finally, the third schedule displayed in Figure 4-3 is1

a just-in-time schedule. This is the ideal schedule: job j is compactly scheduled to finish1

exactly on its due date. In this case, TARD =0 and, like in the second schedule,1

INV =2 × 12 + 1 × 10 + 2 × 7 = 48. Therefore, the total cost incurred by job j in the1 1

third schedule is 0+48=48.

N. SADEH

80 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

4.3. Look-ahead Analysis

4.3.1. Overview

The top-level search procedure implemented in MICRO-BOSS is the micro-

opportunistic search procedure described in Chapter 2. It is exactly the same top-level

procedure as the one used for the job shop CSP in the previous chapter. The notions of

critical variable and promising values are however different, and hence require the

modification of the look-ahead analysis developed for the job shop CSP. Notice also that

the search procedure implemented in the current version of MICRO-BOSS stops as soon

as a first solution has been found. Clearly, if additional computational time is available,

the procedure can be readily transformed into a branch-and-bound procedure [Nemhauser
4288] or a beam search procedure [Lowerre 76, Fox 83] .

4.3.1.1. General Considerations

An ideal value ordering heuristic (for a COP) would be one that would always return an

optimal assignment (i.e. an assignment that participates in one of the best solutions

compatible with the current partial solution) and could be evaluated in no time. Like for

CSPs, if such an ideal value ordering heuristic existed, the order in which variables are

instantiated would not matter: backtracking would never occur and the system would

always obtain optimal solutions. Given an imperfect value ordering heuristic, the order

in which variables are instantiated will generally affect search efficiency, search time,

and the quality of the solution. Ideally, given an imperfect value ordering heuristic, a

perfect variable ordering heuristic would simultaneously minimize search time and

maximize the quality of the solution. Unfortunately, these two objectives are not

necessarily synonymous: some variable ordering heuristics may be better at reducing

backtracking while others tend to lead to better solutions. Rigorously, the merit of a

variable ordering heuristic depends on the importance of reducing search time relative to

the importance of producing a good solution. It is not the purpose of this study to get into

such considerations. Instead our aim is to come up with heuristics that will provide as

good a solution as possible to realistic job shop COPs (with several hundred, possibly

42The look-ahead analysis would remain the same as the one described in this chapter since the goal of
the procedure would still be to explore those branches of the search tree that are expected to lead to the best
(feasible) solutions. In a branch-and-bound procedure, the best solution already obtained by the search
procedure would provide an upper-bound that would be used to prune the search tree from alternatives that
are provably more expensive than the current best solution.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 81

several thousand operations) in a reasonable amount of time (typically under an hour of

CPU time on a state-of-the-art workstation). To this end, efficient heuristics are

developed that attempt to produce as good a solution as possible while maintaining

backtracking at a low level.

4.3.1.2. Optimizing Critical Conflicts First

If all jobs could be scheduled optimally (i.e. just-in-time), there would be no scheduling

problem. Generally this is not the case. Jobs typically have conflicting resource

requirements. The look-ahead analysis carried out by MICRO-BOSS in each search state

is meant to allow the scheduler to focus its effort on those conflicts that currently appear

most critical. In job shop COPs, a critical conflict is one that will require an important

tradeoff, i.e. a tradeoff that will significantly impact the quality of the entire schedule. By

first focusing on critical conflicts, MICRO-BOSS ensures that it has as many options as

possible to optimize these conflicts. As illustrated by a trace provided at the end of this

chapter, once critical tradeoffs have been worked out, the remaining unscheduled

operations tend to become more decoupled and hence easier to optimize. As contention

subsides, so does the chance of backtracking. In other words, by constantly redirecting

search towards those tradeoffs that appear most critical, MICRO-BOSS is expected to

produce better schedules and simultaneously reduce its chances of backtracking.

Experimental results presented in Chapter 5 suggest that this is indeed the case.

4.3.1.3. The Look-ahead Procedure

In general, the importance of a conflict (and the criticality of the operations

participating in that conflict) depends on the number of jobs that are competing for the

same resource, the amount of temporal overlap between the requirements of these jobs,

the number of alternative reservations (i.e. start times) still available to the conflicting

operations and the differences in cost between these alternative reservations. In order to

identify critical conflicts, MICRO-BOSS performs a two-step look-ahead analysis:

Step 1: Within each job, MICRO-BOSS identifies the best remaining reservations

available to each unscheduled operation in the job, and the marginal costs

that would be incurred by the job if alternative reservations were instead

assigned to these operations. These marginal costs are indicators of the

reliance of each operation on the availability of its remaining reservations.

Operations with many possible reservations left and low marginal costs do

N. SADEH

82 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

not heavily rely on anyone of their remaining reservations. On the other

hand, operations with only a small number of good reservations rely more

on the availability of these reservations.

Step 2: MICRO-BOSS estimates resource contention over time by building

probabilistic demand profiles that are biased towards those reservations that

are more heavily relied upon, i.e. towards those reservations that are

expected to produce the best schedules. Highly contended resource/time

intervals correspond to important conflicts/tradeoffs on which the scheduler

should work first.

Critical operations are identified as operations whose good reservations conflict most

with the good reservations of other operations, namely operations that heavily rely on the

most contended resource/time intervals. Promising reservations for these operations are

those reservations that minimize the costs of the conflicting jobs.

The balance of this section provides further details on the two-step look-ahead analysis.

The following two sections describe the operation and reservation ordering heuristics

based on this look-ahead analysis.

4.3.2. Step 1: Reservation Optimization Within a Job

In order to detect critical conflicts between the resource requirements of unscheduled

operations, MICRO-BOSS keeps track of the best start times that remain available to

each unscheduled operation within its job, and the marginal costs that would be incurred

by the job if the operation was allocated another start time. More specifically, for each
kremaining possible start time τ of each unscheduled operation O , MICRO-BOSSi

k(implicitly) keeps track of the minimum additional costs, mincost (τ), that would bei
k k kincurred by the job j to which O belongs, if O was to start at st = τ rather than at one ofi i ik

kits best remaining possible start times. By definition, if st = τ is one of the best start timesi
k kthat remain available to O within its job, mincost (τ)=0. This subsection first illustratesi i

how these costs change from one search state to another, then describes efficient

procedures to keep track of these changes.

1Figure 4-4 displays the mincost curves for each of the five operations required by job ji 1

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 83

1 1 1 1mincost (τ) mincost (τ) mincost (τ) mincost (τ)1 2 4 5

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

10 11 12 13 14 15 16 17 18

3O1

3
R

5

1 2O1

5
R

4
2O1

4
R

32O1

1
R 6O1

2
R

2

job j
1

1mincost (τ)3

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13

erd =0 dd =12 lcd =20 tard =201 1 1 1

1 1 1 1 1inv =2 inv =1 inv =2 inv =0 inv =01 2 3 4 5

Figure 4-4: Assessing the merits of alternative scheduling decisions in the initial
search state.

in the example introduced in the previous section. These curves were computed in the

initial search state. In that state, all operations still have to be scheduled, and all resources
1are entirely available. Consider operation O . After consistency checking, the earliest1

N. SADEH

84 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

1 1 1possible start time of that operation is est =0 and its latest possible start time lst =8: O1 1 1

has 9 possible start times. In order for job j to meet its due date (at time 12), operation1
1 1O would have to start at st =0, and the other operations in job j would have to be1 1 1

compactly scheduled right after it. The optimal schedule for this job is the just-in-time
1schedule displayed in Figure 4-3. Any delay in starting O will translate into tardiness1

1 1costs. For instance, starting O at st =1 would result in tardiness costs of at least1 1

20 × 1=20 (since, in the best case, job j would be late by 1 time unit and tard =20).1 1

Ideally, the operations in jobj would still be compactly scheduled, and inventory costs1

would not be larger than those in the just-in-time schedule. Hence, in this initial state, the
1 1minimum additional costs incurred by job j , if st =1, is mincost (1)=20. Similarly,1 11

1 1 1 1mincost (2)=40, mincost (2)=60, etc. Similar considerations apply to operations O , O ,1 1 2 4
1 1and O . For operation O , things are slightly different. Indeed, if that operation is started5 3

1before st =5 (and hence completes before time 8), tardiness costs no longer decrease.3
1Instead, additional inventory costs will be incurred by job j . For instance, if st =4, the31

best compatible schedule for j will complete on time but will incur an overhead1
1 1inventory cost of 2 × 1=2 (since inv =2), hence mincost (4)=2. Similarly,3 3

1 1mincost (3)=4, mincost (2)=6, etc.3 3

143Suppose that the scheduler creates a new search state and schedules O to start at2
1st =4 (see Figure 4-5). In this search state (and all its possible descendants, i.e. all the2

possible schedules that can be built by completing this partial schedule), job j can no1

longer be completed on time. Job j will be at least 2 time units behind its due date. This1
1 1 1 1affects the optimal start time of O which shifts from st =5 to st =7. Starting O earlier3 3 3 3

1than at st =7 no longer reduces tardiness costs. Instead, it would only increase inventory3
1 1costs (e.g. mincost (6)=2 and mincost (0)=14). Notice that the penalty incurred by job3 3

1 1j for every time unit that O starts after its best start time (i.e. st =7 in the current state,3 31
1st =5 in the initial state) has increased compared to what it used to be in the initial state.3

1Indeed, in the current search state, if O is scheduled to start past its best start time, say at3
1st =8 for instance (i.e. 1 time unit past its best start time), job j will not only incur a3 1

tardiness cost of 1 × tard =20, but it will also see its inventory costs augment by at least1
1 1 1 1(inv + inv) × 1=3. This is because the start time of O has already been fixed. If O1 2 2 3

1 1 1were to start at st =8, O and O would no longer be compactly scheduled right in front3 1 2

43This scheduling decision as well as the other ones assumed later in this example are not good
decisions. They are only made to illustrate interesting changes in the mincost functions.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 85

1 1 1mincost (τ) mincost (τ) mincost (τ)1 4 5

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

12 13 14 15 16 17 18

3O1

3
R

5

1 2O1

5
R

4
2O1

4
R

32O1

1
R O1

2
R

2

job j
1

6

1mincost (τ)3

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13

erd =0 dd =12 lcd =20 tard =201 1 1 1

1 1 1 1 1inv =2 inv =1 inv =2 inv =0 inv =01 2 3 4 5

Figure 4-5: Assessing the merits of alternative scheduling decisions in a search state
1 1where O has been scheduled to start at st =4.2 2

1 1 1of O : in the best case there would be a gap of 1 time unit between O and O . In other4 2 4
1words, the apparent marginal tardiness cost at operation O has changed from 20 to 23 !3

1 1For the same reason, the apparent marginal tardiness costs at O and O are 23 also. The4 5

N. SADEH

86 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

best remaining possible start times for these two operations are respectively 10 and 12.
1 1For instance, the minimum overhead cost for scheduling O at st =18 (instead of its best5 5

1 1remaining start time st =12) is mincost (18)=6 × 23=138 (while it was 160 in the initial5 5

search state).

1The mincost curve of O has changed more dramatically. Whichever start time is1
1assigned to O , this start time no longer affects the tardiness costs incurred by the job.1

1While, in the initial search state, scheduling O early was reducing the minimum1

tardiness costs incurred by the job, now it only increases the minimum inventory costs of
1 1that job (e.g. mincost (0)=4, since inv =2).1 1

As the schedule is constructed, the merits of different possible start times can

dramatically change. It is critical for the scheduler to constantly keep track of these

changes in order to:

1. focus on the scheduling of operations that participate in important tradeoffs,

and

2. identify promising reservations for these operations, namely reservations

that provide a good compromise between the cost incurred by these critical

operations and the other operations with which they compete.

1 1Suppose that the system further schedules O to start at st =15, thereby creating a new5 5
1 1search state (Figure 4-6). Now the selection of a start time for O or O no longer affects3 4

the tardiness costs of the job. However that selection still affects the inventory costs
1 1 1introduced by operation O via the inv × [Max(C ,dd) − st] term in Equation (4.2). For3 3 31 1

1 1 1instance, starting O at st =10 would force O to start earlier, and would increase the4 4 3
1 1inventory costs by 3 × 2=6 (compared to the best remaining start time of O , st =13). In4 4

1other words, in this new search state, mincost (10)=6. Similarly, the best remaining start4
1 1time for operation O is st =10. All earlier possible start times introduce additional3 3

1 1inventory costs (e.g. mincost (0)=20.). Notice that the selection of a start time for O no3 4
1 1longer affects the inventory costs introduced by O and O .1 2

1 1Finally, if O is scheduled to start at st =7, as displayed in Figure 4-7, all four3 3
1remaining possible start times of operation O become equally good (within the job),4

since they no longer have any impact on the tardiness costs or inventory costs incurred by

the job.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 87

1 1mincost (τ) mincost (τ)1 4

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3
0

2

4

6

8

10

12

14

16

18

20

10 11 12 13

3O1

3
R

5

1 2O1

4
R

32O1

1
R O1

2
R

2

job j
1

6 2O1

5
R

4

1mincost (τ)3

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

erd =0 dd =12 lcd =20 tard =201 1 1 1

1 1 1 1 1inv =2 inv =1 inv =2 inv =0 inv =01 2 3 4 5

Figure 4-6: Assessing the merits of alternative scheduling decisions in a search state
1 1 1 1where O has been scheduled to start at st =4 and O at st =15.2 2 5 5

The examples presented so far only involved operations with a single contiguous

interval of possible start times. In general, as operations in other jobs are scheduled, the

possible start times left to an operation (as determined by the consistency checking

mechanism described in Chapter 2) may form several disjoint intervals. When this

happens, mincost functions can become more complex.

N. SADEH

88 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

1 1mincost (τ) mincost (τ)1 4

0

2

4

0 1 2 3 4
0

2

4

10 11 12 13

1 2O1

4
R

32O1

1
R O1

2
R

2

job j
1

6 2O1

5
R

4

3O1

3
R

5

erd =0 dd =12 lcd =20 tard =201 1 1 1

1 1 1 1 1inv =2 inv =1 inv =2 inv =0 inv =01 2 3 4 5

Figure 4-7: Assessing the merits of alternative scheduling decisions in a search state
1 1 1 1 1where O has been scheduled to start at st =4, O at st =15, and O2 2 5 5 3

1at st =7.3

Consider, for instance, a search state in which all operations are still unscheduled,
3except operation O (in job j), which has been scheduled on resource R between time1 3 3

314 and 15 (i.e. st =14). Figure 4-8 displays the mincost functions of the operations in job1
3 1j . Due to the allocation of resource R to O (in job j) between 14 and 15, O (in job j)1 41 3 3 1

1 1can no longer start at st =13 or st =14. The set of possible start times of this operation4 4

now consists of two disjoint time intervals. This in turn affects the shape of the mincost
1 1functions of other operations in j . While starting O at st =4 would force job j to be late1 11 1

1by at least 4 time units (i.e. mincost (4)=80), starting this same operation 1 time unit1
1later, namely at st =5, would force the job to be late by at least 7 time units. This is1

1 1because the earliest compatible start time for O would then be st =15. Consequently,4 4

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 89

1 1 1 1mincost (τ) mincost (τ) mincost (τ) mincost (τ)1 2 4 5

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

10 11 12 13 14 15 16 17 18

1mincost (τ)3

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3O1

3
R

5

2 R
4

2 R
32O1

1
R

1
6O1

2
R

2
O1

5
O1

4

1
job j

3
job j

3 R
2

21 O3

3O3

2
O3

1
R

3 R
1

erd =0 dd =12 lcd =20 tard =201 1 1 1

1 1 1 1 1inv =2 inv =1 inv =2 inv =0 inv =01 2 3 4 5

Figure 4-8: Assessing the merits of alternative scheduling decisions in job j ,1
3 3given a search state where O has been scheduled to start at st =14.1 1

N. SADEH

90 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

1 1starting O at st =5 would result in an overhead tardiness cost of at least 140 (compared1 1
1to the best start time st =0). Additionally, job j would also incur an extra inventory cost1 1

1 1 1of at least inv × 2=4. The total overhead cost for scheduling O at st =5 is1 1 1
1 1 1mincost (5)=140+4=144. Similarly, mincost (6)=142 and mincost (7)=140. Similar1 1 1

1 1computations can be performed to see that mincost (7)=146, mincost (8)=143,2 2
1 1mincost (15)=105, mincost (16)=130, etc.5 5

For the sake of efficiency, the current implementation of MICRO-BOSS computes

mincost functions as if the set of possible start times of each unscheduled operation

consisted of a single contiguous time interval. Under this simplifying assumption, it is

not necessary to explicitly maintain mincost values for each possible start time of each
kunscheduled operation. Instead, for each unscheduled operation O , MICRO-BOSSi

kmaintains an apparent marginal tardiness cost, ap−tard , an apparent marginal inventoryi
kcost, ap−inv , and keeps track of the best possible start time(s) that are currently availablei

kto that operation. The apparent marginal tardiness cost, ap−tard (apparent marginali
k kinventory cost, ap−inv), of operation O , in a given search state, is the minimum costi i

kincrease incurred by job j for every unit of time that O is scheduled past (before) itsik

best possible start time(s), under the simplifying assumption of single contiguous

intervals of possible start times.

Notice that accounting for disjoint intervals of possible start times can only increase the

value of the mincost functions, either because a job will be forced to finish later than

anticipated or because it will incur larger inventory costs. Assuming contiguous intervals

of possible start times in the computation of the mincost functions is an optimistic

simplification. Figure 4-9 displays the simplified mincost functions corresponding to the

search state studied in Figure 4-8.

When moving from one search state to the other, apparent marginal inventory costs and

apparent marginal tardiness costs only change in the job in which an operation was just

scheduled. Best remaining start times of unscheduled operations may however change

both within that job and in other jobs. Updating apparent costs in the job in which an

operation was just scheduled can be done in O(n) time, where n is the number ofl l

operations in that job. Altogether, updating apparent marginal costs within the job where

an operation was just scheduled, and the best remaining start times of all unscheduled

operations, takes at most O(n) time, where n is the number of unscheduled operations.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 91

1 1 1 1mincost (τ) mincost (τ) mincost (τ) mincost (τ)1 2 4 5

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

160

10 11 12 13 14 15 16 17 18

1mincost (τ)3

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13

3O1

3
R

5

2 R
4

2 R
32O1

1
R

1
6O1

2
R

2
O1

5
O1

4

1
job j

3
job j

3 R
2

21 O3

3O3

2
O3

1
R

3 R
1

erd =0 dd =12 lcd =20 tard =201 1 1 1

1 1 1 1 1inv =2 inv =1 inv =2 inv =0 inv =01 2 3 4 5

Figure 4-9: Simplified mincost functions that do not account for the two disjoint
intervals that make up the set of remaining possible start times of

1operation O .4

N. SADEH

92 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

Below an efficient procedure is outlined that updates the apparent marginal tardiness

costs, apparent marginal inventory costs, and best remaining possible start times of

operations within the same job as the operation that was last scheduled. This procedure is
44based on the following observations :

• Apparent Tardiness Costs: In a job j , in which no operation has beenk
k kscheduled, the apparent marginal tardiness cost ap−tard of an operation Oi i

is equal to tard , the marginal tardiness cost of the job. For instance, in thek

initial state displayed in Figure 4-4, all the operations in job j have an1

apparent marginal tardiness cost equal to tard =20. As soon as an operation1
kdownstream of an operation O is scheduled, the apparent marginal tardinessi

k 1cost ap−tard of that operation becomes zero (e.g. operation O in Figure 4-5i 1

1 1 1 band operations O , O , and O in Figure 4-6). When an operation O still1 3 4 a

subject to apparent tardiness costs (i.e. an operation with no operation

scheduled downstream of it) is scheduled, the marginal apparent inventory

costs of that operation and all the operations upstream of it (namely
binv) has to be added to the apparent marginal tardiness costs of all∑ k

b
k ∈ BEFa
the operations in the same job that are still subject to apparent tardiness

1costs. For instance, in Figure 4-5 (i.e. after operation O was scheduled), the2

1 1 1apparent marginal costs of operations O , O and O became4 5 3

1 1inv + inv + tard =23.1 2 1

• Apparent Inventory Costs: In a job j in which no operation has beenk
k kscheduled, the apparent marginal inventory cost ap−inv of an operation O isi i

equal to the sum of the marginal inventory costs introduced by that operation
land all the operations upstream of it: inv (see Equation (4.4)). When∑ k

l
k ∈ BEFi

44These observations suppose apparent marginal costs computed under the assumption of contiguous
intervals of possible start times. They also suppose in-tree process routings, they assume that both tardiness
and inventory costs are non-negative and linear, as defined by Equations (4.1) and (4.2). Finally they
assume finished-goods inventory costs (see Max(C ,dd) in Equation (4.2)). Different assumptions wouldl l
entail different updating procedures.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 93

k kan operation O upstream of O is scheduled, the marginal inventory costs ofj i

k kO and of all the operations upstream of O have to be subtracted from thej j

kapparent marginal inventory cost of O . For instance, in Figure 4-6, thei

1 1 1 1apparent marginal inventory cost of O is ap−inv = inv + inv =2+0=24 4 3 4

1 145(since operation O has already been scheduled). When operation O is2 3

1scheduled (see Figure 4-7), the apparent marginal inventory cost of O4

1becomes zero (i.e. ap−inv =0) because both of its predecessors have been4

1 1scheduled, and O itself does not introduce any inventory cost (i.e. inv =0).4 4

• Best Start Time(s): When both the apparent marginal tardiness and

inventory costs of an operation are positive, that operation has a unique best

start time. This best possible start time can be obtained by subtracting the

duration of the operation itself and the durations of all downstream

operations from the job due date (or the earliest possible completion date, if

it is larger than the due date). For instance, in the initial search state depicted
1in Figure 4-4, the best possible start time of operation O is1

1 1 1 1 1st = dd − du − du − du − du =12 − 2− 2−6 − 2=0. Operations whose1 5 4 2 11

apparent marginal tardiness costs are zero while their apparent marginal

inventory costs are positive also have a unique best start time. This best start
1time is the operation’s latest possible start time (e.g. operation O in Figure1

4-5). When the apparent marginal inventory cost of an operation is zero

while its apparent marginal tardiness cost is positive, all start times allowing

the job to complete before its due date (or before its current earliest possible

completion date, if this date is past the due date) are optimal (within the job).

Finally, if both the apparent marginal tardiness and inventory costs of an

operation are zero, all remaining possible start times of that operation are
1equally good (e.g. operation O in Figure 4-7).4

145In the initial state the apparent marginal inventory cost of O is4
1 1 1 1 1

ap−inv = inv + inv + inv + inv = 2 + 1 + 2 + 0= 5. This does not appear in Figure 4-4, because, in that4 1 2 3 4
1

state, the earliest possible start time of O is also its best possible start time.4

N. SADEH

94 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

lAccordingly, when an operation O is scheduled in job j , the apparent marginal tardinessi l

costs, apparent marginal inventory costs, and best possible start times of the operations

that remain unscheduled within that job can be updated by successively running each of
46the following procedures :

l• Upstream Propagation (starting from O): Change the apparent marginali
ltardiness costs of all upstream operations (i.e. operations upstream of O) toi

l l lzero. For each operation O upstream of O , if O has a positive apparentj i j

marginal inventory cost, change its best remaining start time to its new latest

possible start time. Otherwise all its remaining possible start times are

equally good. These computations can be performed by successively visiting
l leach operation upstream of O , starting from O .i i

l• Downstream Propagation: If ap−inv > 0 (i.e. in the previous search state,i
ljust before O was scheduled), then subtract that apparent marginal inventoryi

cost from the apparent marginal inventory cost of all the operations
ldownstream of O .i

l• Upstream Propagation (starting from O): An upstream propagationnl
lstarting from the last operation in the job (i.e. O) takes place when either ofnl

the following two conditions are met:
lcondition 1: If O still had a positive apparent marginal tardiness cost wheni

it was scheduled, and if it was scheduled past its best possible start
time(s), the earliest possible completion date of the job needs to be
updated. This new earliest possible completion date is then used to
update the best start time(s) of all the operations in the job that still
have a positive apparent marginal tardiness cost. This is done using a
CPM-type of propagation that starts from the last operation in the

ljob, O , and updates the best possible start time(s) of that operationnl

and of all operations upstream of it. This best start time propagation
moves upstream along each branch (and sub-branch) in the process
routing until a scheduled operation is reached in that branch (or sub-
branch).

lcondition 2: If O still had a positive apparent marginal inventory cost wheni

it was scheduled, that apparent marginal inventory cost needs to be

46The exact order in which these procedures are applied does not matter.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 95

added to the apparent marginal tardiness costs of all operations in the
job with a positive apparent marginal tardiness cost. These
unscheduled operations are precisely those visited in the upstream
propagation described in condition 1.

A similar procedure can be designed to update apparent marginal costs and sets of best

remaining possible start times, when the scheduler backtracks.

4.3.3. Step 2: Building Biased Demand Profiles to Identify Highly Contended
Resource/Time Intervals

Once it has identified the best remaining reservations (i.e. start times) of each

unscheduled operation (within its job), and the marginal costs incurred by each job for

not selecting one of these reservations, MICRO-BOSS looks for operations whose good

reservations (within their jobs) conflict with the good reservations of other operations.

The scheduler and focuses on optimizing these conflicts first.

A simple way to identify resource/time intervals that are highly contended for would be

to assume that all operations will be simultaneously scheduled at their best start times.

Resource/time intervals that would need to be reserved more than once would indicate

the need for a tradeoff. In search states, where some operations have more than one best

start time, this approach would not work. Because, in general, it is impossible to schedule

all operations at one of their best start times, this approach may also fail to identify

conflicts that will arise later, as some operations are scheduled at start times that appear

to be less than optimal in the current search state. Last but not least, demand profiles

obtained by simultaneously scheduling each operation at one of its best start times would

not provide any information on the reliance of each operation on the availability of a

given start time. In general, this reliance is a function of the number of best start times

available to the operation, and the marginal costs incurred by the job for selecting a

suboptimal start time. A conflict involving a small number of operations, all with high

marginal costs, might turn out to be more critical than a conflict with a larger number of

operations whose marginal costs are lower.

For these reasons, a probabilistic framework was adopted, similar to the one used for

the job shop CSP. This time however, the scheduler does not assume uniform probability

distributions. Instead, start time distributions are now biased towards those start times

that are expected to produce better schedules. Each start time τ that remains possible for

N. SADEH

96 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

l lan unscheduled operation O is assigned a subjective probability σ (τ) to be selected fori i

that operation. Possible start times with lower mincost values are simply assigned a

larger probability, thereby reflecting our expectation that they will allow for the

production of better schedules. Like in the previous chapter, using these start time
ldistributions, MICRO-BOSS builds for each unscheduled operation O , an individuali

ldemand profile D (t), that indicates the subjective probability that the operation will bei

requiring its resource as a function of time. By aggregating the individual demand

profiles of all unscheduled operations requiring a given resource, R , the schedulerk
aggrobtains an aggregate demand profile, D (t), that indicates contention betweenRk

unscheduled operations for that resource as a function of time. Equivalently, a stochastic

mechanism can be assumed that completes the current partial schedule by randomly
l lassigning a start time to each unscheduled operation O , according to its σ distribution.i i

aggrD (t) is then the expected number of reservations that would be made for resource RR kk

at time t.

In the current implementation, the start time probability distribution of a typical
lunscheduled operation O is of the form:i

lmincost (τ)il lσ (τ)= N × [1 − B ×] (4.5)i i Maxcost

where:
l l l• N is a normalization factor that ensures that σ (τ)=1, since O will be∑i i i

τ

assigned exactly one start time ;

• Maxcost is the maximum value of the mincost functions taken over all the

remaining possible start times of all remaining unscheduled operations;

• B is a system parameter that controls the degree to which start time

distributions are biased towards good start times (0 ≤ B< 1). In particular, if

B=0, all possible start times are considered equally probable (uniform start

time distributions like for the job shop CSP). Both in the example presented

below and in the experiments reported in Chapter 5, the value of this

parameter was set at B=0.9.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 97

Because the micro-opportunistic scheduler optimizes the most important conflicts first,

the costs that remain to be optimized tend to decrease during the construction of the

schedule. By updating the value of Maxcost in each search state and using it to measure

cost differences in Equation (4.5), MICRO-BOSS constantly adjusts its sensitivity to the
47largest differences in costs that are still possible in the current state .

Given these start time probability distributions, the probability that an unscheduled
loperation O uses its resource at time t, which is referred to as the individual demand ofi

l lO for R , is:i i

l lD (t)= σ (τ) (4.6)∑i i
l

t − du < τ ≤ ti

lNotice that the normalization factor N ensures that the total demand of each unscheduledi

l l l loperation O is equal to the duration of that operation, du (i.e. D (τ)= du). This total∑i i i i
τ

demand has simply been spread over the different start times that remain available to that

operation in the current search state, according to the distribution defined in Equation

(4.5). Operations with a lot of good start times (i.e. operations that have a lot of start

times with a low mincost value, compared to the value of Maxcost in the current search

state) will have individual demand profiles that are almost uniformly spread over long

time intervals. Their individual demands will be fairly low at any given moment in time.

In other words, because these operations have a large number of good start times still

available, they do not rely heavily on anyone of them. Instead, operations with a small

number of good start times will have more compact individual demands. Their demand

will be high over relatively short intervals, thereby reflecting a higher reliance on the

availability of these intervals.

For each resource R , the total demand of all unscheduled operations for that resource isk

given by:

47When dealing with jobs that have a lot of slack (e.g. a job whose latest acceptable completion date is
far beyond both its due date and its earliest possible completion date), it is important to only include
meaningful cost differences in the computation of Maxcost. To this end, the current implementation uses a
slightly modified definition of Maxcost, which is computed as the maximum value of the mincost functions

n l n ll lfor start times that allow their job to start after dd − 5 du and complete by dd + du . The∑ ∑l li ii = 1 i = 1
probability assigned to earlier (later) start times is obtained by interpolating the start time distribution so

l l
that est − 1 (lst + 1) has a probability of zero.i i

N. SADEH

98 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

aggr lD (t)= D (t) (4.7)∑R ik l
R = Rki

where the summation is carried over all unscheduled operations that need resource R .k

Observe also that the consistency checking technique used by MICRO-BOSS ensures

that all start times conflicting with reservations made earlier have been pruned from the

set of remaining possible start times of all unscheduled operations (see Chapter 2). For

this reason, the aggregate demands never overlap with reservations that have already

been made.

1Start time distribution σ (τ)3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

p
ro

b
ab

ili
ty

0 1 2 3 4 5 6 7 8 9 10 11 12 13
start time

1 1Figure 4-10: Start time distribution σ (τ) for operation O in the initial search state3 3
depicted in Figure 4-4.

1 1Figure 4-10 represents σ (τ), the start time distribution of operation O , in the initial3 3

search state depicted in Figure 4-4. From the mincost curves represented in Figure 4-4

and those of the operations in the three other jobs, it can be seen that the largest value

taken by a mincost function in the initial state is 160, i.e. Maxcost =160. In other words,

the largest difference in cost between the worst and the best possible start time of any
1 1operation is never larger than 160 in the initial state. The best start time of O is st =5,3 3

1 1 1i.e. mincost (5)=0. Hence, Equation (4.5) indicates that σ (5)= N . The next best start3 3 3
1 1time for that operation is st =4 with mincost (4)=2, hence3 3

41 1 1σ (4)= N × (1 − 0.9 ×)= N × 0.94375. Similar computations for the other possible3 3 3160

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 99

11 1 1 1start times of O indicate that N = . Consequently σ (4)=0.1011, σ (5)=0.1022,3 3 3 39.78125

1σ (6)=0.0907, etc. Similar computations can be performed for the other unscheduled3

operations.

Based on these start time distributions, MICRO-BOSS builds individual demand

profiles according to Equation (4.6). These demand profiles are in turn aggregated

according to Equation (4.7). This process is illustrated in Figure 4-11 for resource R .2
1 2 3 4There are four operations requiring resource R : O , O O , and O . Figure 4-11 displays2 2 3 22

the individual demand profile of each of these four operations, and the aggregate demand

for R obtained by summing the four individual demands. As expected, the individual2
3 4demands of operations O and O are quite uniform since these two operations have3 2

relatively low apparent marginal costs. In contrast, the individual demands of operations
1 2O and O , which have larger apparent marginal costs, are more concentrated around the2 2

good reservations of these operations.

The aggregate demand for each of the five resources are shown in Figure 4-12. As

anticipated, R is the resource that is the most contended for. The aggregate demand for2

that resource is well above 1.0 over a large time interval, with a peak at 1.49. Resource

R appears to be a potential bottleneck at the beginning of the problem, with a demand1

peaking at 1.20. Whether R will actually be an auxiliary bottleneck or not cannot be1

directly determined from the curves displayed in Figure 4-12. Instead, the scheduler

needs to update these curves in each search state to account for earlier decisions. It could

be the case that, as operations requiring R are scheduled, the aggregate demand for R2 1

becomes smoother. A trace provided at the end of this chapter indicates that this is not

the case in this example. On the contrary, after only a fraction of the operations requiring

resource R have been scheduled, MICRO-BOSS will abandon scheduling operations on2

R and temporarily shift to resource R .2 1

Updating the start time distributions, the individual and aggregate demand profiles,

requires at most O(nk) time in each search state, where n is the number of unscheduled

operations and k an upper-bound on the number of possible start times left to an

unscheduled operation.

The idea of building biased demand profiles is not new. [Muscettola 87] describes a

technique in which a random schedule generator is used to detect potential resource

congestion, given a predefined scheduling strategy. The random generator is biased to

N. SADEH

100 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

1 1D (τ): Individual Demand of O for R2 2 2

0.00
0.20
0.40
0.60
0.80
1.00

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

2 2D (τ): Individual Demand of O for R2 2 2

0.00
0.20
0.40
0.60
0.80
1.00

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

3 3D (τ): Individual Demand of O for R3 3 2

0.00
0.20
0.40
0.60

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

4 4D (τ): Individual Demand of O for R2 2 2

0.00
0.20
0.40
0.60

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

aggrD (τ): Aggregate Demand for RR 22

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

Figure 4-11: Building R ’s aggregate demand profile in the initial search state.2

select more often those reservations that are expected to produce better schedules. Our

technique is different, as it does not assume a predefined scheduling strategy, but instead

uses the resulting demand profiles to dynamically revise the current strategy.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

LOOK-AHEAD ANALYSIS 101

aggrD (τ): Aggregate Demand for RR 11

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

aggrD (τ): Aggregate Demand for RR 22

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

contention

peak

aggrD (τ): Aggregate Demand for RR 33

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

aggrD (τ): Aggregate Demand for RR 44

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

aggrD (τ): Aggregate Demand for RR 55

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

Figure 4-12: Aggregate demands in the initial search state for each of the five resources.

N. SADEH

102 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

4.4. Operation Selection

In MICRO-BOSS, critical operations are identified as operations whose good

reservations conflict with the good reservations of other operations. The largest peak in

the aggregate demand profiles determines the next conflict (or micro-bottleneck) to be

optimized, and the operation with the largest reliance on the availability of that peak is

selected to be scheduled next. Intuitively the operation that relies most on the availability

of the most contended resource/time interval is also the one whose good start times are

the most likely to become unavailable if other operations contending for that

resource/time interval were scheduled first.

To identify critical operations, MICRO-BOSS uses the exact same "Operation Resource

Reliance" (ORR) heuristic introduced in Chapter 3 for the job shop CSP. MICRO-BOSS

decomposes the demand profile of each resource into time intervals of length equal to the

average duration of the operations requiring that resource. The time interval with the

largest average aggregate demand is identified as the one for which contention is the

highest, and the operation with the largest individual demand for that resource/time
48interval is selected to be scheduled next

In the example introduced earlier, the most contended demand peak is that for resource

R over interval [7,12[. Figure 4-13 displays the aggregate demand for resource R2 2

together with the individual demands of the four operations contributing to that demand.
1The operation with the largest contribution to the demand peak is O . Therefore, this2

1operation is selected to be scheduled next. This is no real surprise: O belongs to one of2

the two jobs in the problem that have a high marginal tardiness cost (tard =20). While1

any delay in starting job j will cause j to complete late, job j (i.e. the other job with a1 1 2

high marginal tardiness cost) can tolerate a small amount of delay without ending up late.

48Multiple variations of of this heuristic have been tried, including variations using different interval
lengths and different methods for selecting the critical operation, once the demand peak has been identified.
The variation described here appears to be best both with respect to schedule quality and search efficiency.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

OPERATION SELECTION 103

aggrD (τ): Aggregate Demand for RR 22

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

ag
g

re
g

at
e

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

1 1D (τ): Individual Demand of O for R2 2 2

0.00
0.20
0.40
0.60
0.80
1.00

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

2 2D (τ): Individual Demand of O for R2 2 2

0.00
0.20
0.40
0.60
0.80
1.00

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

3 3D (τ): Individual Demand of O for R3 3 2

0.00
0.20
0.40
0.60

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

4 4D (τ): Individual Demand of O for R2 2 2

0.00
0.20
0.40
0.60

d
em

an
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time

Figure 4-13: Operation selection in the initial search state.

N. SADEH

104 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

4.5. Reservation Selection

Once it has selected an operation, MICRO-BOSS attempts to identify a reservation for

that operation that will minimize as much as possible the costs incurred by the job to

which that operation belongs and by other competing jobs. This is equivalent to solving

a one-machine early/tardy problem in which operations scheduled past their best start

times incur penalties determined by their apparent marginal tardiness costs, while

operations scheduled before their best start times incur earliness penalties determined by

their apparent marginal inventory costs.

The one-machine early/tardy problem is an NP-complete problem in itself [Garey 88].

Because of the presence of earliness costs, solving this problem to optimality requires, in

general, the insertion of idle-time in the schedule. It can be shown that, given a fixed

operation sequence, idle time can be optimally inserted in that sequence in O(NlogN)

time, where N is the number of operations to be scheduled on the resource [Garey 88].

Hence the problem is reduced to that of finding an optimal sequence, namely a sequence

that will minimize the early/tardy costs, once idle time has been optimally inserted in it.

Most of the procedures proposed so far to deal with this problem rely on branch-and-

bound enumeration procedures [Baker 90]. [Fry 87] describes a dominance criterion that

helps speed up this approach. Nevertheless the computational requirements of this
49procedure remain quite prohibitive even for small problems [Fry 87] . On the other

hand, Ow and Morton have developed a family of much faster procedures that are pretty

good at minimizing early/tardy costs under the simplifying assumption that no idle time

will be inserted [Ow 89]. A delayed release policy derived from the priority dispatch

version of the procedure has also been proposed that attempts to further reduce early

costs by allowing for the insertion of idle time in front of each job [Morton 88].

For these reasons, MICRO-BOSS uses a hybrid reservation ordering heuristic that

adapts to the amount of contention for the critical resource/time interval. When

contention is high, MICRO-BOSS successively runs several variations of the early/tardy

procedure developed by Ow and Morton, including variations with an immediate release

policy and variations using the delayed release policy. The one-machine schedule that

reduces most the costs of the operations competing for the critical resource determines

the reservation that is assigned to the critical operation. When contention is lower,

49Close to 10 minutes of CPU time on a VAX 780 for a 15-operation problem.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

RESERVATION SELECTION 105

MICRO-BOSS dynamically switches to a greedy reservation ordering heuristic, in which

reservations are simply rated according to their apparent costs (i.e. according to their

mincost values). Indeed, in situations where contention is not too high, a sizable

proportion of the good start times of non critical operations tend to still be available after

more critical operations have been scheduled. When this is the case, a greedy reservation

ordering tends to produce high quality solutions. In particular, it inserts idle time as

required by the operation it is scheduling.

N. SADEH

106 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

The early/tardy procedure used in the current system is based on the simplest version of

the procedure developed by Ow and Morton. It consists of a parametric dispatch rule, in
l l lwhich each operation O is assigned a priority π (slack) given by:i i i

l lW if slack ≤ 0i i

lslackil l l l l l lπ (slack) = W − (W + H) if 0 ≤ slack ≤ κ Di i i i i i ilκ Di

l− H otherwisei

where:
lap−tard il• W =i ldu i

lap−inv il• H =i ldu i

l l l• slack is O ’s slack measured with respect to the latest of O ’s besti i i

remaining end times (which plays the role of an apparent due date)

• κ is the look-ahead parameter of the priority rule

l• D = d u , where d u is the average duration of the operations requiring∑i R R
R

resource R. The summation is over the critical resource and the resources

lrequired by the unscheduled operations downstream of O (i.e. thei

lsummation stops as soon as a scheduled operation downstream of O isi

50encountered).

50This differs from the early/tardy rule described in [Ow 89], which deals with a one-machine scheduling
l l

problem. Here, instead, the slack at operation O is shared between O and all the unscheduled operationsi i
downstream of it. This slack determines whether these operations can meet the job due date or complete
without bumping into a downstream operation that has already been scheduled.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

RESERVATION SELECTION 107

This priority rule can be viewed as a simple way to interpolate between two special

cases of the early/tardy problem without inserted idle time [Ow 89]. The first case is one

in which a Weighted Shortest Processing Time (WSPT) ordering of the operations

competing for the critical resource produces a schedule in which each operation is

scheduled past its apparent due date. Under this condition, a WSPT ordering of the

operations is optimal. The second case is the converse of the first one. It corresponds to

a situation in which a Weighted Longest Processing Time (WLPT) ordering produces a

schedule in which each operation is scheduled before its apparent due date. In this case,

the WLPT sequence is optimal (assuming that idle time cannot be inserted). The first

case typically corresponds to situations in which all operations have little or no slack,

whereas the second case corresponds to situations in which each operation has an ample

amount of slack. Clearly, the amount of slack required to be in one situation or the other

depends on the amount of contention between jobs, which is itself a function of the

number of competing jobs and their due date distributions. Ow and Morton account for

this by introducing a look-ahead parameter that is empirically adjusted to control the

interpolation between the two extreme cases. Small values of the parameter are generally

best for problems where contention is low, while larger values need to be used when

contention is higher [Ow 89].

In the current implementation, two variations of the early/tardy rule are successively

tried by MICRO-BOSS. The first variation is a straightforward implementation of the

dispatch rule, while the second variation schedules the critical operation at the latest of its

best start times and completes the one-machine schedule using the dispatch rule. The use

of this second variation of the procedure was motivated by the fact that the costs of the

critical operation are often more important than those of all the other operations with

which it competes. As a consequence, just scheduling that operation at one of its best

start times can be optimal. These two variations of the early/tardy rule are coupled to two

release policies: an immediate release policy which releases each operation at its earliest

possible start time, and a delayed release policy which releases each operation only after

its priority has become positive [Morton 88]. All four combinations of the two variations

of the early/tardy rule and the two release policies are successively tried by MICRO-

BOSS. If during the construction of a one-machine schedule, an operation is scheduled

past its latest possible start time, that schedule is immediately discarded. For each legal

one-machine schedule, MICRO-BOSS remembers the start time assigned to the critical

operation in that schedule and the total apparent cost of the schedule, as determined by

N. SADEH

108 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

the sum of the apparent costs of all operations competing for the critical resource

(including the critical operation itself). At the end, the start times allocated to the critical

operation in these one-machine schedules are ranked according to the cheapest schedule

in which they participate (with the best start time corresponding to the cheapest

schedule). Start times that are still possible for the critical operation but have not been

selected in any of the one-machine schedules, are kept as secondary alternatives (in case

the scheduler backtracks), and are ranked according to their local apparent costs (mincost

values). The worst-case complexity of this reservation ordering heuristic is
2O(max{N ,k logk }), where N is the number of jobs competing for the critical resource

51and k the number of start times that remain possible for the critical operation .

Table 4-1 displays the values of the different parameters used by the early/tardy
1 lprocedure to select a start time for operation O in the example introduced earlier. ist2 i

l 1represents the latest of the best remaining start times of O . For instance, for O , we havei 2
20 3 17 3 51 1 1 1ist =2 (see Figure 4-4). We also have W = =3.33, H = =0.5, and D = + + =8.25.2 2 2 26 6 4 2 2

With the immediate release policy, each operation is released at its earliest possible start
l ltime. With the delayed release policy, each operation O is released at del−rel , thei i

learliest possible start time at which the priority π of that operation becomes positive:i

lWil l l ldel−rel = Max{est , ist −κ D }i i i i l lW + Hi i

1In this simple example, both release policies happen to produce the same result. O is2

the only operation available to be scheduled at time 2. Consequently, all the one-

machine schedules produced by the early/tardy procedure suggest to schedule this

operation at time 2.

51 2O(N) corresponds to the complexity of the dispatch rule, and O(k log k) is the time required to sort the
possible start times of the critical operation. When MICRO-BOSS switches to its greedy reservation
ordering heuristic, the complexity of the reservation ordering heuristic simply becomes O(k log k). In
practice, given that, on the average, there is very little backtracking, it is more efficient to just look for the
best start time. Later, if MICRO-BOSS needs to backtrack, it looks for the next best start time, and so on.
In the absence of backtracking, this requires only O(k) steps, instead of O(k log k).

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

RESERVATION SELECTION 109

1Reservation Selection for O2

l l l l l l l l lO est lst ist du W H D del−reli i i i i i i i i
(κ=3)

1O 2 10 2 6 3.33 0.5 8.25 22

2O 7 15 9 5 4 1 4.25 72

3O 3 17 6 3 1.66 0.33 4.25 33

4O 3 17 15 3 3.33 0.33 4.25 42

Table 4-1: Reservation Selection.

4.6. A Small Example

The current version of MICRO-BOSS has been implemented in Knowledge Craft, a

frame-based language that runs on top of Common Lisp. The program runs on a

DECstation 3100 under Mach UNIX. The small example used throughout this chapter

requires a little over 2 seconds of CPU time in the current implementation. An edited

trace of that example appears in Figure 4-14.

Observe that, rather than entirely scheduling the main bottleneck resource, namely

resource R , MICRO-BOSS shifted to resource R only after two out of the four2 1

operations requiring R had been scheduled. The average expected demand displayed in2

each search state is the average demand for the critical demand peak, and the average

contribution is that of the critical operation for the demand over that peak. The

decoupling effect of the operation ordering heuristic is very clear in this example. In

particular, the average demand over the critical peak consistently decreases from one

search state to the next, thereby indicating a regular decrease in contention as the

schedule is constructed (remember that the demand peak corresponds to the interval of

highest contention in the current search state). This observation is correlated by the

average contribution of the critical operation to the demand for the peak in each search

state. As the schedule is constructed, the contribution of the critical operation to the peak

becomes a larger proportion of the total demand for that peak. This indicates that there

are fewer and fewer operations contending with each other. After half of the operations

have been scheduled (depth 7), contention has totally disappeared: the critical operation

is the only one to contribute to the demand for the peak. In other words, the problem has

N. SADEH

110 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

MON NOV 12 1990 --- 17:04:49 EST

>> Depth: 0, Number of states visited: 0
Critical demand peak:
R between 7 and 12, Avg. expected demand: 1.482

1Critical Operation: O , Avg. contrib.: 0.602
Using early/tardy reservation ordering heuristic:

1O scheduled between 2 and 8 on R2 2

>> Depth: 1, Number of states visited: 1
Critical demand peak:
R between 10 and 15, Avg. expected demand: 1.332

2Critical Operation: O , Avg. contrib.: 0.642
Using early/tardy reservation ordering heuristic:

2O scheduled between 9 and 14 on R2 2

>> Depth: 2, Number of states visited: 2
Critical demand peak:
R between 0 and 4, Avg. expected demand: 1.351

2Critical Operation: O , Avg. contrib.: 0.751
Using early/tardy reservation ordering heuristic:

2O scheduled between 2 and 9 on R1 1

>> Depth: 3, Number of states visited: 3
Critical demand peak:
R between 14 and 19, Avg. expected demand: 1.132

3Critical Operation: O , Avg. contrib.: 0.583
Using early/tardy reservation ordering heuristic:

3O scheduled between 17 and 20 on R3 2

>> Depth: 4, Number of states visited: 4
Critical demand peak:
R between 14 and 19, Avg. expected demand: 0.602

4Critical Operation: O , Avg. contrib.: 0.602
Using greedy reservation ordering heuristic:

4O scheduled between 14 and 17 on R2 2

Figure 4-14: An edited trace

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

A SMALL EXAMPLE 111

>> Depth: 5, Number of states visited: 5
Critical demand peak:
R between 10 and 13, Avg. expected demand: 0.574

1Critical Operation: O , Avg. contrib.: 0.345
Using greedy reservation ordering heuristic:

1O scheduled between 10 and 12 on R5 4

>> Depth: 6, Number of states visited: 6
Critical demand peak:
R between 8 and 10, Avg. expected demand: 1.083

1Critical Operation: O , Avg. contrib.: 1.04
Using greedy reservation ordering heuristic:

1O scheduled between 8 and 10 on R4 3

>> Depth: 7, Number of states visited: 7
Critical demand peak:
R between 4 and 7, Avg. expected demand: 0.555

1Critical Operation: O , Avg. contrib.: 0.553
Using greedy reservation ordering heuristic:

1O scheduled between 5 and 8 on R3 5

>> Depth: 8, Number of states visited: 8
Critical demand peak:
R between 0 and 4, Avg. expected demand: 0.501

1Critical Operation: O , Avg. contrib.: 0.501
Using greedy reservation ordering heuristic:

1O scheduled between 0 and 2 on R1 1

>> Depth: 9, Number of states visited: 9
Critical demand peak:
R between 5 and 8, Avg. expected demand: 0.444

4Critical Operation: O , Avg. contrib.: 0.441
Using greedy reservation ordering heuristic:

4O scheduled between 7 and 10 on R1 4

Figure 4-14, continued

N. SADEH

112 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

>> Depth: 10, Number of states visited: 10
Critical demand peak:
R between 12 and 16, Avg. expected demand: 0.311

3Critical Operation: O , Avg. contrib.: 0.312
Using greedy reservation ordering heuristic:

3O scheduled between 15 and 17 on R2 1

>> Depth: 11, Number of states visited: 11
Critical demand peak:
R between 13 and 15, Avg. expected demand: 0.143

3Critical Operation: O , Avg. contrib.: 0.141
Using greedy reservation ordering heuristic:

3O scheduled between 14 and 15 on R1 3

>> Depth: 12, Number of states visited: 12
Schedule Completed

Figure 4-14, concluded

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

A SMALL EXAMPLE 113

been totally decoupled. The resource requirements of the operations that still need to be

scheduled no longer interact with each other. This phenomenon is not specific to this

example, but can be observed in all the problems that we have run. This suggests that the

ORR operation ordering heuristic is indeed very good at constantly redirecting search

towards the most important conflicts.

Notice also that no backtracking was necessary to produce the schedule. The schedule

produced by MICRO-BOSS is displayed in Figure 4-15.

R

R

R

R

R

1

2

3

4

5

time0 2 4 6 8 10 12 14 16 18 20

O

O

O

O

O

O

O

3

O
1

O

O

O
4

1

O

job

job

job

job
3 4

21

1

2

1

4

1

3

1

1

1

5

2

1

2

2

3

2

3

3

4

2

Figure 4-15: The final schedule produced by the micro-opportunistic scheduler.

The cost of this schedule is 180. In comparison, the Earliest Due Date priority rule

produces a schedule with a cost of 208, the Weighted Shortest Processing Time rule and

the Weighted COVERT priority rule [Vepsalainen 87]produce a schedule with a cost of

255, and the Slack per Remaining Processing Time rule produces a schedule with a cost

of 300. In this example the savings allowed by the micro-opportunistic approach are the

results of reductions both in tardiness and inventory costs. Extensive experimental studies

of the micro-opportunistic approach to scheduling are presented in the next chapter.

N. SADEH

114 FACTORY SCHEDULING: A CONSTRAINED OPTIMIZATION PROBLEM

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

115

Chapter 5

Performance Evaluation of MICRO-BOSS

This chapter reports several experimental studies that were carried out in order to

evaluate the performance of MICRO-BOSS. Section 5.1 describes how scheduling

problems were randomly generated to cover a wide range of scheduling conditions. It

also describes the metrics used to evaluate performance. Section 5.2 describes a study

comparing MICRO-BOSS with six priority dispatch rules. Section 5.3 compares

MICRO-BOSS with a macro-opportunistic scheduler that dynamically switches between

a resource-centered perspective and a job-centered perspective. The next section

analyzes the impact of using biased demand profiles to guide the micro-opportunistic

scheduler. Section 5.4 attempts to answer the question of how much

flexibility/opportunism is really required to produce good schedules. Finally Section 5.5

studies the sensitivity of MICRO-BOSS to changes in the cost function.

5.1. Design of the Test Data

A set of 80 scheduling problems was randomly generated to cover a wide range of

scheduling conditions. Scheduling conditions were varied by adjusting a set of three
52parameters : a parameter controlling the average due date of the jobs to be scheduled

(tardy factor), a parameter controlling the variance of the job due dates (due date

range), and a parameter controlling the number of major bottleneck machines.

These three scheduling parameters were set as follows:

• Tardy Factor (τ): this factor controlled the average tightness of job due

dates in the experiments. Given an estimate of the expected makespan of the

problem, say M, the average job due date was set to (1−τ)M, where τ is the

52These parameters or similar ones are commonly used in the scheduling literature to study different
shop floor situations [Srinivasan 71, Fisher 76, Ow 85, Morton 88].

N. SADEH

116 PERFORMANCE EVALUATION OF MICRO-BOSS

53tardy factor . If τ=0 it might be possible to complete all jobs on time. As τ
increases, the proportion of jobs that can still be completed on time

decreases. In the scheduling problems that were generated, two values of the

tardy factor were used: τ =0.2 (loose average due date) and τ =0.4 (tight

average due date).

• Due Date Range (R): job due dates were randomly drawn from a uniform

probability distribution (1−τ)MU(1−R/2 , 1+R/2), where U(a,b) represents a

uniform distribution between a and b, and R is the due date range. Two due

date ranges were used: 1.2 (wide due date range) and 0.6 (tight due date

range).

• Number of Bottlenecks: All problems involved five resources. In half of

the problems, one out of the five resources was selected to be a major

bottleneck, while the other half of the problems had two major bottlenecks.

A set of 10 scheduling problems was randomly generated for each parameter

combination (see Table 5-1), resulting in a total of 80 scheduling problems (10 problems

x 2 tardy factors x 2 due date ranges x 2 bottleneck configurations). All experiments

involved 20 jobs and 5 resources, for a total of 100 operations. Each job had a linear

process routing, and had to go through each machine exactly once. The order in which a

job would go through the machines was randomly generated for each job, except for the

bottleneck machines, which were always visited after a fixed number of operations (in

order to further increase resource contention). In the case with one bottleneck resource,

the bottleneck operation corresponded to the 4th operation (out of 5); in the case with two

bottlenecks, the bottlenecks corresponded to the 2d and 5th operations of each job.

Job sizes (S): The size S of job j (i.e. the number of parts to be produced)l l l

was randomly drawn from a uniform distribution U(1,7)

lOperation durations (du): Operation durations were correlated with jobi
lsizes. The duration of an operation O on a non-bottleneck resource wasi

randomly drawn from a uniform distribution S U(0.5 , 1.5). In problems withl

R53 mM = (n − 1) d u + d u , where n is the number of jobs, m the number of resources, R the∑R R btnkR = Rbtnk 1

main bottleneck resource and d u denotes the average duration of the operations requiring resource R .R ii
This estimate was first proposed in [Ow 85].

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

DESIGN OF THE TEST DATA 117

Problem Sets

Number τ R Problem
of Bottlenecks Set

1 0.2 1.2 1

1 0.2 0.6 2

1 0.4 1.2 3

1 0.4 0.6 4

2 0.2 1.2 5

2 0.2 0.6 6

2 0.4 1.2 7

2 0.4 0.6 8

Table 5-1: Parameter settings for each of the eight problem sets.

la single bottleneck, the duration of an operation O requiring that bottlenecki
lwas set to du =2 S . In problems with two bottlenecks, the duration of thei l

operation requiring the first bottleneck was set to 1.8 S and that of thel

operation requiring the second bottleneck was set to 2 S .l

Tardiness costs (tard): the marginal tardiness cost of job j , tard , wasl l l

randomly drawn from a uniform distribution 5 U(1 , 2S).l

lInventory costs (inv): Inventory costs were only introduced by the firsti
l loperation in each job, namely operation O . inv can be interpreted as the1 1

sum of the marginal holding costs and the interests on raw material costs for

job j . These costs are typically proportional to the size of the job. In thesel
lexperiments, inv was simply set to S . Given that the mean of the marginal1 l

tardiness cost distribution is slightly larger than 5 S , this corresponds to al

ratio of marginal tardiness cost over marginal inventory cost with a mean

slightly larger than 5.

Earliest Acceptable Release Date/Latest Acceptable Completion Date

(erd , lcd): In order to increase contention, all jobs were given the samel l

earliest acceptable release date, erd =0. Since these experiments werel

designed to study the quality of the schedules produced by the micro-

opportunistic approach, all jobs were given a non-constraining latest

N. SADEH

118 PERFORMANCE EVALUATION OF MICRO-BOSS

54acceptable completion date , which was set to lcd =2 M (where M is thel

makespan estimate described earlier). Studies of problems with more

constraining latest acceptable completion dates can be found in [Sadeh 90].

The objective in all these experiments was to minimize total schedule cost, as defined in

Section 4.2. Additionally, performance with respect to the following criteria was also

measured:

• Average weighted tardiness:

tard × Max(0 , C − dd)∑ l l l
l

tard∑ l
l

• Average weighted flowtime:
l linv × (C − st)∑ 1 1l

l

linv∑ 1
l

This measure corresponds to the average in-process inventory of the

schedule (or work-in-process).

• Average weighted in-system time:
l linv × [Max(dd ,C) − st]∑ 1 1l l

l

linv∑ 1
l

This measure accounts for both job flowtime (i.e. in-process inventory) and

job earliness (i.e. finished-goods inventory). It corresponds to the average

weighted time spent by a job in the system (i.e. it is a measure of the total

inventory in the system).

• Search efficiency: the number of operations to be scheduled (100) divided

by the number of search states generated. Search efficiency is only reported

for the opportunistic schedulers, since priority dispatch rules are one-pass

procedures that never backtrack.

54Another reason for choosing non-constraining latest acceptable completion dates was that we wanted
to compare the micro-opportunistic approach against some priority dispatch rules. These rules are unable to
account for such constraints.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

DESIGN OF THE TEST DATA 119

5.2. Comparison Against Six Priority Dispatch Rules

A first set of 560 experiments was performed to compare MICRO-BOSS against six

priority dispatch rules. These rules included two variations of the early/tardy rule

developed by Ow and Morton [Ow 89, Morton 88]: a linear variation, LIN-ET, similar to

the rule used in the hybrid reservation ordering heuristic implemented in MICRO-BOSS,

and a (more sophisticated) exponential version of the rule, referred to as EXP-ET. The

other four priority dispatch rules selected for the study were the Weighted Shortest

Processing Time (WSPT) rule, the Earliest Due Date (EDD) rule, the Slack per

Remaining Processing Time (S/RPT) rule and the Weighted Cost OVER Time

(WCOVERT) rule. These four rules have been reported to be particularly good at

reducing tardiness under different scheduling conditions [Vepsalainen 87].

Both variations of the early/tardy rule were run together with release policies that

allowed jobs to be released only after their priorities had become positive, as suggested in

[Morton 88]. The other four dispatch rules were run in combination with the Average

Queue Time release policy (AQT) described in [Morton 88]. AQT is a parametric release

policy that estimates queuing time as a multiple of the average job duration. The release

of a job is determined by offsetting its due date by the sum of the total job duration and

the estimated queueing time.

This section successively presents the results of the comparison with the WSPT, EDD,

WCOVERT and S/RPT dispatch rules and the results of the comparison with the LIN-ET

and EXP-ET dispatch rules.

N. SADEH

120 PERFORMANCE EVALUATION OF MICRO-BOSS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

S
ch

ed
u

le
 C

o
st

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
WSPT
EDD
WCOVERT
S/RPT

Figure 5-1: Comparison of the cost of the schedules produced by MICRO-BOSS and
the WSPT, EDD, S/RPT and WCOVERT dispatch rules under 8 different

scheduling conditions.

Figure 5-1 displays the average costs of the schedules produced by MICRO-BOSS and

the WSPT, EDD, S/RPT and WCOVERT dispatch rules. Figures 5-2, 5-3 and 5-4

summarize performance with respect to weighted tardiness, weighted flowtime and

weighted in-system time.

Remarkably enough, MICRO-BOSS consistently outperformed all four dispatch rules

under all eight conditions of the study. Figures 5-2, 5-3 and 5-4 indicate that, while

performing at a level comparable to the dispatch rules with respect to tardiness, MICRO-

BOSS yielded significant reductions in inventory (between 15 and 50 percent depending

on the scheduling situation). The most important reductions in inventory were observed

on the most difficult problems, namely those with tight average due dates and narrow due

date ranges. Overall, MICRO-BOSS reduced the average schedule cost by 18%

compared to its closest competitor, WCOVERT.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

COMPARISON AGAINST SIX PRIORITY DISPATCH RULES 121

0

5

10

15

20

25

30

A
vg

. W
ei

g
h

te
d

 T
ar

d
in

es
s

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
WSPT
EDD
WCOVERT
S/RPT

Figure 5-2: Weighted tardiness performance of MICRO-BOSS and
the WSPT, EDD, S/RPT and WCOVERT dispatch rules under 8 different

scheduling conditions.

0

10

20

30

40

50

60

70

80

90

100

110

120

A
vg

. W
ei

g
h

te
d

 F
lo

w
ti

m
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
WSPT
EDD
WCOVERT
S/RPT

Figure 5-3: Weighted flowtime performance of MICRO-BOSS and
the WSPT, EDD, S/RPT and WCOVERT dispatch rules under 8 different

scheduling conditions.

N. SADEH

122 PERFORMANCE EVALUATION OF MICRO-BOSS

0

10

20

30

40

50

60

70

80

90

100

110

120

A
vg

. W
ei

g
h

te
d

 In
-S

ys
te

m
 T

im
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
WSPT
EDD
WCOVERT
S/RPT

Figure 5-4: Weighted in-system time performance of MICRO-BOSS and
the WSPT, EDD, S/RPT and WCOVERT dispatch rules under 8 different

scheduling conditions.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

COMPARISON AGAINST SIX PRIORITY DISPATCH RULES 123

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
ch

ed
u

le
 C

o
st

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET
LIN-ET

Figure 5-5: Comparison of the cost of the schedules produced by MICRO-BOSS and
the LIN-ET and EXP-ET dispatch rules under 8 different scheduling

conditions.

Figure 5-5 displays the average costs of the schedules produced by MICRO-BOSS,

LIN-ET and EXP-ET. Figures 5-6, 5-7 and 5-8 respectively summarize tardiness,

flowtime and in-system time performance.

MICRO-BOSS outperformed these two priority dispatch rules on seven problem sets

out of eight, while being slightly outperformed on problem set 7. With respect to

tardiness, MICRO-BOSS performed at the same level as EXP-ET (see Figure 5-6), while

clearly outperforming LIN-ET (especially on problems with a narrow due date range). In

general, LIN-ET and EXP-ET performed better with respect to inventory than the other

four dispatch rules (EDD, WSPT, WCOVERT and S/RPT). This is not really a surprise

since LIN-ET and EXP-ET explicitly account for these costs. Nevertheless, MICRO-

BOSS still yielded very significant reductions in inventory compared to these rules. In

particular, compared to EXP-ET, the best of the two dispatch rules, MICRO-BOSS

allowed for reductions of 15 to 35 percent in average weighted flowtime, and 10 to 30
55percent in average weighted in-system time . Overall, MICRO-BOSS saved more than

8 percent in schedule costs compared to EXP-ET.

55The relatively good performance of LIN-ET with respect to in-system time is in part due to the poor
performance of this rule with respect to tardiness.

N. SADEH

124 PERFORMANCE EVALUATION OF MICRO-BOSS

0

5

10

15

20

25

30

A
vg

. W
ei

g
h

te
d

 T
ar

d
in

es
s

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET
LIN-ET

Figure 5-6: Weighted tardiness performance of MICRO-BOSS and
the LIN-ET and EXP-ET dispatch rules under 8 different scheduling

conditions.

0

10

20

30

40

50

60

70

80

90

A
vg

. W
ei

g
h

te
d

 F
lo

w
ti

m
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET
LIN-ET

Figure 5-7: Weighted flowtime performance of MICRO-BOSS and
the LIN-ET and EXP-ET dispatch rules under 8 different scheduling

conditions.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

COMPARISON AGAINST SIX PRIORITY DISPATCH RULES 125

0

10

20

30

40

50

60

70

80

90

A
vg

. W
ei

g
h

te
d

 In
-S

ys
te

m
 T

im
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET
LIN-ET

Figure 5-8: Weighted in-system time performance of MICRO-BOSS and
the LIN-ET and EXP-ET dispatch rules under 8 different scheduling

conditions.

In most problems, MICRO-BOSS achieved a search efficiency of 100%, which was

computed as the ratio of the number of operations to be scheduled over the number of

search states that were visited. Problem set 7 (two bottlenecks, a tight average due date,

and a wide due date range) turned out to be the most difficult. Even on this problem set,

MICRO-BOSS was still able to achieve a search efficiency of 90%. In the set of 80

scheduling problems, the worst problem required to generate 168 search states (for 100

operations). On a DECstation 3100, MICRO-BOSS required slightly over 20 minutes of
56CPU time for each problem .

56Preliminary experiments in C seem to indicate that this time could be reduced to 1 or 2 minutes, on the
same machine.

N. SADEH

126 PERFORMANCE EVALUATION OF MICRO-BOSS

5.3. Comparison Against A Macro-opportunistic Scheduler

A macro-opportunistic scheduler was implemented that dynamically combined both a

resource-centered perspective and a job-centered perspective, like in the OPIS scheduling

system [Smith 86a, Ow 87, Ow 88a]. However, while OPIS relies on a set of repair

heuristics to recover from inconsistencies [Ow 88b], the macro-opportunistic scheduler of

this study was built to use the same consistency enforcing techniques and the same
57backtracking scheme as MICRO-BOSS . The macro-opportunistic scheduler also used

the same demand profiles as MICRO-BOSS. When average demand for the most critical

resource/time interval was above some threshold level (a parameter of the system that

was empirically adjusted), the macro-opportunistic scheduler focused on scheduling the

operations requiring that resource/time interval, otherwise it used a job-centered

perspective to identify a critical job and schedule some or all the operations in that job.

Each time a resource/time interval or a portion of a job was scheduled, new demand

profiles were computed to decide which scheduling perspective to use next.

In each scheduling perspective the macro-opportunistic scheduler respectively relied on

the following heuristics:

• Resource-centered perspective: In its resource-centered perspective, the

scheduler used the same early/tardy procedure as MICRO-BOSS. As in the

micro-opportunistic scheduler, the one-machine schedules produced by this

procedure were ranked according to how well they minimized the apparent

costs of the jobs competing for the critical resource. The best schedule was

tried first. Operations requiring the critical resource/time interval were

scheduled starting with those that relied most on that resource/time interval.

Finally, in order to maintain backtracking at an acceptable level, it was found

necessary to limit to four the number of operations that could be scheduled at

once within this perspective (i.e. once the four operations that relied most on

the critical resource/time interval had been scheduled, the macro-

opportunistic scheduler updated its demand profiles in order to decide which

perspective to adopt next).

57An alternative would have been to implement a variation of MICRO-BOSS using the same repair
heuristics as OPIS. Besides being quite time-consuming to implement, such a comparison would have been
affected by the quality of the specific repair heuristics currently implemented in the OPIS scheduler.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

COMPARISON AGAINST A MACRO-OPPORTUNISTIC SCHEDULER 127

• Job-centered perspective: In this scheduling perspective, each job was

partitioned into (one or several) disjoint subproblems, each corresponding to
58a contiguous set of unscheduled operations in the job’s process routing . In

this perspective, the operation ordering heuristic implemented in MICRO-

BOSS was used to identify a critical operation. The subproblem to which

that operation belonged was selected to be scheduled next. If the job to

which the critical subproblem belonged had an operation scheduled

downstream of the subproblem, operations in the subproblem would be

compactly scheduled next to that operation, starting with the last operation in

the subproblem (backward scheduling), to reduce inventory. Otherwise

operations would be scheduled in a forward fashion so as to minimize both

tardiness and inventory. This was simply accomplished by scheduling these

operations one by one at their best remaining start times.

58For instance, in Figure 4-6, job j would be partitioned into two subproblems: a subproblem with1
1 1 1

operation O and one with operations O and O .1 3 4

N. SADEH

128 PERFORMANCE EVALUATION OF MICRO-BOSS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
ch

ed
u

le
 C

o
st

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
MACRO-OPPORTUNISTIC

Figure 5-9: Comparison of the cost of the schedules produced by MICRO-BOSS and
a macro-opportunistic scheduler under 8 different scheduling

conditions.

Figure 5-9 summarizes the results of the comparison between MICRO-BOSS and the
59macro-opportunistic scheduler . The macro-opportunistic scheduler was clearly

outperformed by MICRO-BOSS under all eight scheduling conditions.

Figures 5-10, 5-11 and 5-12 indicate that the micro-opportunistic scheduler produced

important savings both in tardiness and inventory over the macro-opportunistic scheduler.

Although the macro-opportunistic approach built schedules with less inventory than the

dispatch rules, it was unable to achieve inventory reductions comparable to those

obtained by the micro-opportunistic scheduler. Interestingly enough, the macro-

opportunistic scheduler seemed to have problems meeting due dates. For this reason,

even though it allowed for important reductions in inventory, the macro-opportunistic

scheduler was often outperformed by some of the dispatch rules. Although a more

sophisticated macro-opportunistic scheduler might have produced better results, it seems

unlikely that it would have been able to outperform the micro-opportunistic approach.

59The results presented in this section correspond to the 69 experiments (out of 80) that were each solved
in less than 1,000 search states by the macro-opportunistic scheduler.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

COMPARISON AGAINST A MACRO-OPPORTUNISTIC SCHEDULER 129

0

5

10

15

20

25

30

A
vg

. W
ei

g
h

te
d

 T
ar

d
in

es
s

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
MACRO-OPPORTUNISTIC

Figure 5-10: Weighted tardiness performance of MICRO-BOSS and
a macro-opportunistic scheduler under 8 different scheduling

conditions.

0

10

20

30

40

50

60

70

80

A
vg

. W
ei

g
h

te
d

 F
lo

w
ti

m
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
MACRO-OPPORTUNISTIC

Figure 5-11: Weighted flowtime performance of MICRO-BOSS and
a macro-opportunistic scheduler under 8 different scheduling

conditions.

N. SADEH

130 PERFORMANCE EVALUATION OF MICRO-BOSS

0

10

20

30

40

50

60

70

80

90

100

A
vg

. W
ei

g
h

te
d

 In
-S

ys
te

m
 T

im
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
MACRO-OPPORTUNISTIC

Figure 5-12: Weighted in-system time performance of MICRO-BOSS and
a macro-opportunistic scheduler under 8 different scheduling

conditions.

These experimental results complement earlier experimental studies of macro-

opportunistic schedulers, in which sequence-dependent setups played a major role [Ow

88a]. In these earlier experiments, the macro-opportunistic scheduler outperformed the

competing dispatch rule (WCOVERT) by using a heuristic that greatly reduced setups at

the bottleneck. This enabled the macro-opportunistic scheduler to produce schedules

with less tardiness than those produced by the dispatch rule, which relied on a myopic

(i.e. local) decision rule to reduce setups (i.e. the dispatch rule did not know which

machine was the bottleneck and used decision rules to minimize setups that were only

looking at the jobs currently queuing in front of each machine). After using its resource-

centered perspective to schedule the main bottleneck, the job-centered perspective was

called upon to complete the schedule while minimizing inventory. Although our

experiments confirm the ability of a macro-opportunistic scheduler to reduce inventory

compared to dispatch rules, they seem to indicate that macro-opportunistic schedulers

have more problems meeting due dates when dealing with problems in which sequence-

dependent setups are not a major factor.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

COMPARISON AGAINST A MACRO-OPPORTUNISTIC SCHEDULER 131

0

10

20

30

40

50

60

70

80

90

100

S
ea

rc
h

 E
ff

ic
ie

n
cy

 (
%

)

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
MACRO-OPPORTUNISTIC

Figure 5-13: Search efficiency of MICRO-BOSS and a macro-opportunistic
scheduler under 8 different scheduling conditions.

Finally Figure 5-13 indicates that the macro-opportunistic approach produced a lot more

backtracking than the micro-opportunistic approach, especially on the more difficult

problems with 2 bottlenecks and tight average due dates. The search efficiency of the

macro-opportunistic scheduler dropped below 50% on problem sets 7 and 8.

Because of several hacks in the implementation of the macro-opportunistic scheduler, a

direct comparison of actual search times for both the macro- and micro-opportunistic

schedulers would not be fair to the macro-opportunistic scheduler. In the absence of

backtracking, the macro-opportunistic scheduler could have been up to four times faster

than the micro-opportunistic scheduler in its resource-centered perspective (since it was

allowed to schedule up to four operations in that perspective), and up to five times faster

in its job-centered perspective (since job subproblems could be as large as entire jobs,

which, in these experiments, had five operations). In practice, backtracking quickly

reduces this advantage. In particular, on the 11 problems (out of 80) that it could not

solve in less than 1,000 states, the macro-opportunistic scheduler had to generate at least

10 times as many search states as the micro-opportunistic scheduler. Macro-

opportunistic schedulers like OPIS do not have this problem as they rely on efficient

repair heuristics to recover from inconsistencies. It appears however that, if used in

N. SADEH

132 PERFORMANCE EVALUATION OF MICRO-BOSS

combination with repair heuristics, a micro-opportunistic scheduler would not have to

call upon these heuristics as often as a macro-opportunistic scheduler. pIf, like in many

schedulers, the only repair heuristic is one that relaxes due dates in order to resolve

inconsistencies, each call to that heuristic is likely to degrade the quality of the schedule.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

COMPARISON AGAINST A MACRO-OPPORTUNISTIC SCHEDULER 133

5.4. Evaluating the Impact of the Biased Demand Profiles

A third set of experiments was performed to test the effect of using biased demand

profiles to guide the micro-opportunistic scheduler. To this end, a variation of the micro-

opportunistic scheduler using unbiased demand profiles (B =0 in Equation (4.5)) was run

on the same set of 80 scheduling problems.

0

2000

4000

6000

8000

10000

12000

14000

16000
S

ch
ed

u
le

 C
o

st

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
UNBIASED VERSION

Figure 5-14: Comparison of the cost of the schedules produced with B=0
(unbiased version) and B=0.9 (biased version) under eight different

scheduling conditions.

Figure 5-14 compares the average schedule costs obtained by both variations of the

micro-opportunistic scheduler. Figures 5-15 and 5-16 respectively report tardiness and

global inventory performance. In seven out of the eight scheduling situations of the

study, simply biasing the demand profiles allowed for savings ranging from 3% to 18%,

including an impressive 18% in the most difficult scheduling situation (2 bottlenecks,

τ =0.4, and R=0.6). In the one case (out of eight) where the unbiased version produced

better schedules, the biased version was only outperformed by a small 3%. Overall, the

biased version of MICRO-BOSS performed 23% better with respect to tardiness (Figure

5-15) while incurring a slight increase of 2% in inventory (Figure 5-16). Altogether,

biasing the demand profiles reduced schedule costs by 10%. These results validate both

the idea of building biased demand profiles and the particular technique described in this

N. SADEH

134 PERFORMANCE EVALUATION OF MICRO-BOSS

0

5

10

15

20

25

30

A
vg

. W
ei

g
h

te
d

 T
ar

d
in

es
s

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
UNBIASED VERSION

Figure 5-15: Weighted tardiness performance with B=0 (unbiased version)
and B=0.9 (biased version) under eight different scheduling

conditions.

0

10

20

30

40

50

60

70

80

A
vg

. W
ei

g
h

te
d

 In
-S

ys
te

m
 T

im
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
UNBIASED VERSION

Figure 5-16: Weighted in-system time performance with B=0
(unbiased version) and B=0.9 (biased version) under

eight different scheduling conditions.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

EVALUATING THE IMPACT OF THE BIASED DEMAND PROFILES 135

dissertation to operationalize this idea (namely the use of the mincost functions). They

also validate the simplifying assumption of contiguous time intervals, which was made to

speedup the computation of the mincost functions. In general, it should be possible to

obtain even better results by varying the bias in function of different problem

characteristics. One might even consider adjusting the bias during the construction of the

schedule. Other methods for biasing the demand profiles should be investigated as well.

N. SADEH

136 PERFORMANCE EVALUATION OF MICRO-BOSS

5.5. Varying the Granularity of the Micro-opportunistic Approach

The above experiments indicate that a micro-opportunistic approach to scheduling

indeed allows for the production of good schedules while maintaining search efficiency

at a very high level. Important savings in computation time could however be achieved if

it was not necessary to update the demand profiles in each search state. This section

describes experiments performed in an attempt to determine how often it is really

necessary to update the demand profiles and redirect the current search strategy in order

to produce good schedules.

Like in Chapter 3, variations of the micro-opportunistic scheduler were built, which

differed in the number, G, of operations that had to be scheduled before the scheduler

was allowed to look for a new critical resource/time interval. The version with G=1 is

the MICRO-BOSS scheduler studied throughout this chapter. For G > 1, the G

operations with the largest reliance on the current critical resource/time interval were

scheduled one by one in decreasing order of their reliance. For instance, in the example
1displayed in Figure 4-13, the version with a granularity G=3 would first schedule O ,2

2 3then O , and finally O . The scheduler would then update the demand profiles and look2 3
60for a new critical resource/time interval .

Overall, cost performance of MICRO-BOSS and two coarser variations of the scheduler
61with G=2 and G=3 is summarized in Figure 5-17 . These results indicate that the

quality of the schedules consistently degrades as the granularity of the micro-

opportunistic approach increases. These results corroborate those of Section 5.3. They

suggest that all the flexibility of the micro-opportunistic scheduling approach is necessary

to obtain the results reported earlier in this chapter. In other words critical resource/time

intervals are highly dynamic, and it is critical to constantly follow their evolution in order

to produce quality schedules. Additional results provided in Figures 5-18, 5-19, 5-20 and

5-21 indicate that the degradation observed for larger values of G is due to poorer

performance both with respect to tardiness and inventory. As in Chapter 3, the results

also indicate that search efficiency degrades as the granularity of the scheduler increases

(especially on problems with tight average due dates and two bottlenecks).

60Apparent costs were still updated in each search state since they are needed for the reservation ordering
heuristic.

61The results reported in this section were obtained on the 78 experiments (out of 80) solved in less than
1,000 search states by the scheduler with granularity G = 3.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

VARYING THE GRANULARITY OF THE MICRO-OPPORTUNISTIC APPROACH 137

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

S
ch

ed
u

le
 C

o
st

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS GRAN: 1
OPPORTUNISTIC GRAN: 2
OPPORTUNISTIC GRAN: 3

Figure 5-17: Comparison of the cost of the schedules produced by MICRO-BOSS and
two coarser opportunistic schedulers under 8 different scheduling

conditions.

0

5

10

15

20

25

30

A
vg

. W
ei

g
h

te
d

 T
ar

d
in

es
s

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS GRAN: 1
OPPORTUNISTIC GRAN: 2
OPPORTUNISTIC GRAN: 3

Figure 5-18: Weighted tardiness performance of MICRO-BOSS and
two coarser opportunistic schedulers under 8 different scheduling

conditions.

N. SADEH

138 PERFORMANCE EVALUATION OF MICRO-BOSS

0

10

20

30

40

50

60

70

80

90

100

A
vg

. W
ei

g
h

te
d

 F
lo

w
ti

m
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS GRAN: 1
OPPORTUNISTIC GRAN: 2
OPPORTUNISTIC GRAN: 3

Figure 5-19: Weighted flowtime performance of MICRO-BOSS and
two coarser opportunistic schedulers under 8 different scheduling

conditions.

Nevertheless, it might however be possible to adapt the granularity of the scheduler in

function of the difficulty of the problem or even in function of the difficulty of the

current search state. In particular one could imagine a scheduler whose granularity

increases as contention subsides during the construction of the schedule. Further

experimentation is needed to determine whether such a scheduler can actually be

constructed without incurring performance degradation.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

VARYING THE GRANULARITY OF THE MICRO-OPPORTUNISTIC APPROACH 139

0

10

20

30

40

50

60

70

80

90

100

A
vg

. W
ei

g
h

te
d

 In
-S

ys
te

m
 T

im
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS GRAN: 1
OPPORTUNISTIC GRAN: 2
OPPORTUNISTIC GRAN: 3

Figure 5-20: Weighted in-system time performance of MICRO-BOSS and
two coarser opportunistic schedulers under 8 different scheduling

conditions.

N. SADEH

140 PERFORMANCE EVALUATION OF MICRO-BOSS

0

10

20

30

40

50

60

70

80

90

100

S
ea

rc
h

 E
ff

ic
ie

n
cy

 (
%

)

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS GRAN: 1
OPPORTUNISTIC GRAN: 2
OPPORTUNISTIC GRAN: 3

Figure 5-21: Weighted in-system time performance of MICRO-BOSS and
two coarser opportunistic schedulers under 8 different scheduling

conditions.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

VARYING THE GRANULARITY OF THE MICRO-OPPORTUNISTIC APPROACH 141

5.6. Sensitivity to Changes in the Cost Function

The experiments reported earlier in this chapter were performed on scheduling problems
tardlin which the average value r of the ratio was equal to 5, namely experiments in which

l
invi

tardiness was given more importance than inventory, as it is often the case in practice.

This section reports additional experimental results obtained on a set of problems in

which the average value of this ratio was set to 1 (i.e. problems in which tardiness and

inventory performance were treated equally). The set of problems with r =1 was

generated to be identical to the set with r =5, except for tardiness costs which were

randomly drawn from a uniform distribution U(1 , 2S) (in order to have r =1).l

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S
ch

ed
u

le
 C

o
st

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET

Figure 5-22: Comparison of MICRO-BOSS and EXP-ET on problems with r =1
(i.e. problems with low tardiness costs).

In these experiments, MICRO-BOSS was compared against the EXP-ET dispatch rule,

the rule that had performed best on problems with r =5. Figure 5-22 compares the cost of

the schedules produced by MICRO-BOSS and EXP-ET for r =1. It appears that MICRO-

BOSS outperformed EXP-ET even more clearly than on the set with r =5.

Figures 5-23, 5-24, and 5-25 respectively compare tardiness, flowtime, and in-system

time performance. Both MICRO-BOSS and EXP-ET produced schedules with more

N. SADEH

142 PERFORMANCE EVALUATION OF MICRO-BOSS

0

5

10

15

20

25

30

A
vg

. W
ei

g
h

te
d

 T
ar

d
in

es
s

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET

Figure 5-23: Weighted tardiness performance of MICRO-BOSS and EXP-ET on
problems with r =1 (i.e. problems with low tardiness

costs).

0

10

20

30

40

50

60

70

80

90

A
vg

. W
ei

g
h

te
d

 F
lo

w
ti

m
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET

Figure 5-24: Weighted flowtime performance of MICRO-BOSS and EXP-ET on
problems with r =1 (i.e. problems with low tardiness

costs).

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

SENSITIVITY TO CHANGES IN THE COST FUNCTION 143

0

10

20

30

40

50

60

70

80

90

A
vg

. W
ei

g
h

te
d

 In
-S

ys
te

m
 T

im
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS
EXP-ET

Figure 5-25: Weighted in-system time performance of MICRO-BOSS and EXP-ET on
problems with r =1 (i.e. problems with low tardiness

costs).

tardiness than for the problem set with r =5 (i.e. the problem set where tardiness costs

were more important than inventory costs). It appears however that MICRO-BOSS was

a lot more effective at reducing inventory than EXP-ET.

Figures 5-26 and 5-27 illustrate the adaptation of MICRO-BOSS to changes in the cost

function by comparing the tardiness and inventory of the schedules produced for r =1 and

for r =5. The adaptation to changes in the cost function is very clear: for r =5 (i.e.

problems with high tardiness costs), MICRO-BOSS produced schedules with less

tardiness and more inventory than for r =1 (i.e. problems with low tardiness costs).

N. SADEH

144 PERFORMANCE EVALUATION OF MICRO-BOSS

0

5

10

15

20

25

30

A
vg

. W
ei

g
h

te
d

 T
ar

d
in

es
s

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS, PROBLEM SET WITH AVG. RATIO OF 5
MICRO-BOSS, PROBLEM SET WITH AVG. RATIO OF 1

Figure 5-26: Weighted tardiness performance of MICRO-BOSS on 80 problems
with r =5 (i.e. high tardiness costs) and 80 problems

with r =1 (i.e. low tardiness costs).

0

10

20

30

40

50

60

70

80

A
vg

. W
ei

g
h

te
d

 In
-S

ys
te

m
 T

im
e

0 1 2 3 4 5 6 7 8
Problem Set

MICRO-BOSS, PROBLEM SET WITH AVG. RATIO OF 5
MICRO-BOSS, PROBLEM SET WITH AVG. RATIO OF 1

Figure 5-27: Weighted in-system time performance of MICRO-BOSS on 80 problems
with r =5 (i.e. high tardiness costs) and 80 problems

with r =1 (i.e. low tardiness costs).

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

145

Chapter 6

Summary and Concluding Remarks

This chapter summarizes the main contributions of this work. To conclude, a discussion

of future possible research directions is provided.

6.1. Contributions

The main contributions of this dissertation are as follows:

• A Micro-opportunistic Approach to Job Shop Scheduling: While earlier

schedulers such as ISIS, OPT and OPIS have relied on coarse problem

decompositions, this dissertation presented a micro-opportunistic approach

to job shop scheduling that allows for much finer subproblems. Rather than

scheduling large resource subproblems or large job subproblems one by one,

a micro-opportunistic scheduler can view each operation as an independent

decision point. In this dissertation, it was demonstrated that the extra

flexibility of this approach can be exploited to constantly redirect the

scheduling effort towards those bottleneck operations that appear to be most

critical. Experimental results demonstrate that the flexibility of this

approach is instrumental in efficiently solving problems in which some

operations have to be performed within non-relaxable time windows (e.g.

non-relaxable release and due dates). Experimentation in the factory

scheduling domain also indicates that the ability of the micro-opportunistic

approach to constantly revise its search procedure yields important

improvements in schedule quality.

• Application of the CSP Paradigm to Job Shop Scheduling: The CSP

paradigm embedded in the micro-opportunistic approach aims at solving

N. SADEH

146 SUMMARY AND CONCLUDING REMARKS

Constraint Satisfaction Problems by interleaving backtrack search with the

application of consistency enforcing techniques and look-ahead techniques

to decide which variable to instantiate next and which value to assign to that

variable. At the time this research started, a good deal of experimental

results reported in the CSP literature had been obtained on toy problems such

as N-queens. This dissertation demonstrates that the CSP paradigm scales

up to larger and harder problems such as job shop scheduling. It also shows

that generic CSP heuristics that have been proposed in the literature are not

sufficient to solve these problems. This is because these heuristics fail to

properly account for the constraint interactions induced by the high

connectivity of the constraint graphs generally encountered in job shop

scheduling. Instead, new heuristics were developed that were shown to

outperform both generic CSP heuristics and specialized scheduling

heuristics.

This work also suggests that benchmark problems often used in the CSP

literature are not representative of hard problems such as job shop

scheduling. It is hoped that this dissertation will prompt researchers in the

field to look for new benchmark problems and new more powerful heuristics

for these problems.

• New Variable and Value Ordering Heuristics based on a Probabilistic

Model of the Search Space: A probabilistic model of the search space was

introduced in which, for CSPs, critical operations are identified as those

likely to create backtracking and promising values as those expected to be

compatible with a large number of solutions. Within this model, measures

were developed to estimate the reliance of an operation on the availability of

a reservation, and the degree of contention among unscheduled operations

for the possession of a resource over some time interval. Based on these

measures, a pair of new variable and value ordering heuristics was defined:

1. The Operation Resource Reliance (ORR) variable ordering heuristic

selects the operation that relies most on the most contended

resource/time interval, and

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

CONTRIBUTIONS 147

2. The Filtered Survivable Schedules (FSS) value ordering heuristic

assigns to that operation the reservation which is expected to be

compatible with the largest number of survivable job schedules, i.e.

the largest number of job schedules expected to survive resource

contention.

Experimental results show that these two heuristics enable the micro-

opportunistic scheduler to efficiently solve many job shop scheduling

problems with non-relaxable time windows that could not be efficiently

solved by prior heuristics (both generic CSP heuristics and specialized

heuristics designed for similar scheduling problems). The results also

indicate that the ORR and FSS heuristics not only allow for significant

increases in search efficiency but also allow for important reductions in

search time.

• Extension of the CSP Paradigm to deal with COPs: This dissertation also

extends the CSP paradigm to deal with job shop scheduling as an

optimization problem. While least constraining value ordering heuristics

used to solve CSPs are particularly good at reducing backtracking, they

typically fail to provide good solutions. In order to produce quality solutions,

more constraining value ordering heuristics are required. This generally

prompts the use of stronger consistency enforcing mechanisms and more

accurate variable ordering heuristics in order to maintain backtracking at a

low level.

This dissertation suggests that a critical variable in a COP is one involved in

an important tradeoff, and a promising value one that is expected to optimize

this tradeoff. An important tradeoff is a subproblem, whose solution will

critically impact the quality of the entire solution. By first optimizing the

most important tradeoffs in a problem, the system can later use the solutions

to these tradeoffs to help solve the remainder of the problem. Once critical

tradeoffs have been worked out, the remainder of the problem tends to

N. SADEH

148 SUMMARY AND CONCLUDING REMARKS

become more decoupled, and hence easier to optimize. Chances of

backtracking tend to simultaneously subside. A system, that does not

attempt to work out critical tradeoffs first, runs the risk of overconstraining

its set of alternatives before having worked on the subproblems that will

impact most the quality of the entire solution.

It was shown that the probabilistic model introduced for the job shop CSP

can be generalized to identify tradeoff operations. This is done by

constructing biased demand profiles that reflect contention between the good

reservations of unscheduled operations. The ORR variable ordering

heuristic is then used to identify operations whose good reservations are

expected to conflict with the good reservations of other unscheduled

operations. Experimental results comparing versions of the MICRO-BOSS

scheduler using both biased and unbiased demand profiles validate the idea

of working on tradeoff operations first, and validate the probabilistic model

implemented in MICRO-BOSS to identify these tradeoff operations via the

construction of biased demand profiles.

• The MICRO-BOSS Factory Scheduling System: One of the most tangible

contribution of this thesis is certainly the MICRO-BOSS factory scheduling

system itself, which is able to deal explicitly with tardiness costs, in-process

inventory costs, and finished-goods inventory costs. This system has

outperformed a variety of competing scheduling techniques under a wide

range of scheduling conditions. MICRO-BOSS introduces the notion of

bottleneck operation, which is directly formalized in terms of tardiness and

inventory costs and accounts for earlier scheduling decisions. An early

version of MICRO-BOSS is currently used as the scheduling module of the

CORTES decentralized production control system [Sycara 91].

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

CONTRIBUTIONS 149

6.2. Future Research

There are a number of ways in which this research can be extended, some of which are

briefly described below.

6.2.1. Dynamically Adapting the Search Procedure

Many aspects of the micro-opportunistic search procedure could benefit from being

tuned to the problem at hand, to the state currently being explored, or even to the

subproblem currently under consideration. Some specific suggestions follow.

• Slowly Increasing the Granularity of the Search Procedure:

Experimental results reported in Chapter 3 and 5 indicate that bottleneck

operations can shift very fast from one part of the search space to another

during the construction of the schedule. In the current version of the micro-

opportunistic search procedure demand profiles are updated in each search

state to track the evolution of bottleneck operations. While this can be done

relatively fast, important speedups could be achieved if the demand profiles

did not have to be updated so often. It is possible that, as contention

subsides, the granularity of the search procedure could be gradually

increased without affecting the performance of the scheduler.

• Dynamically Adjusting the Bias in the Demand Profiles: This

dissertation indicates that important reductions in schedule costs can be

achieved by biasing the demand profiles in order to identify operations

involved in important tradeoffs. Exactly how much bias should be used is

still very much an open issue. It seems in fact that the optimal bias is a

function of the difficulty of the problem at hand. The optimal bias is also

expected to vary from one search state to another, and even within one

search state from one part of the problem to another. Too strong a bias will

generally result into extra backtracking on problems where contention is

high, whereas too little bias may produce poorer solutions. A mechanism that

progressively increases the bias in the demand profiles as contention

subsides might further improve schedule quality without reducing search

efficiency.

N. SADEH

150 SUMMARY AND CONCLUDING REMARKS

• Dynamic Variable and Value Ordering Heuristics/Dynamic Consistency

Enforcing Mechanisms/Dynamic Deadend Recovery Schemes: At the

end of Chapter 3, a switch mechanism was briefly described that would

enable the CSP version of the micro-opportunistic scheduler to automatically

switch to simpler variable and value ordering heuristics, once contention has

dropped below a threshold level. One such mechanism was actually

implemented in an earlier version of the micro-opportunistic scheduler,

which relied on Monte Carlo sampling to measure resource contention. This

switch allowed for important speedups. A similar switch is currently

embedded in the reservation ordering heuristic of MICRO-BOSS: when

contention decreases, the system automatically switches to a simpler greedy

reservation ordering heuristic. More generally, dynamic variable and value

ordering heuristics, dynamic consistency enforcing mechanisms, and

dynamic deadend recovery schemes could allow for important speedups by

always performing just enough work to allow the system to make the best

possible decision in each search state. This is in the line of some of the work

performed within the context of the OPIS scheduling system, especially in

the area of schedule revision [Ow 88a]. Collinot and Lepape have pushed

this idea one step further and studied a consistency enforcing mechanism that

works differently on different parts of a same problem [Collinot 90].

Learning techniques [Michalski 83] might prove very useful to properly tune all these

dynamic mechanisms [Shaw 90].

6.2.2. Breaking Away from the Depth-first Backtrack Search Paradigm

The micro-opportunistic approach to job shop scheduling described in this dissertation

is based on a depth-first backtrack search procedure. One advantage of this procedure is

that it requires keeping track of only one partial solution at a time. It is also relatively

quick at finding a first solution, since it does not waste time simultaneously exploring

several paths. Another important advantage of this search procedure is that it guarantees

search completeness: even if there is only one solution, the procedure is bound to find it;

if the procedure does not find a solution, one can infer that the problem is infeasible. In

order to guarantee search completeness, backtrack search requires that, within each

branch of the search tree, assignments are undone only if they are found to violate a

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

FUTURE RESEARCH 151

constraint. This requirement as well as other assumptions of depth-first backtrack search

may actually be worth tampering with.

• Iterative Improvement: The search procedure studied in this dissertation

can readily be transformed into a branch-and-bound search procedure

[Nemhauser 88] or a beam search procedure [Lowerre 76, Fox 83], but such

brute force search generalizations may not be very cost-effective. Instead, as

the schedule is constructed, one could attempt to improve earlier scheduling

decisions based on more recent ones. One such reoptimization technique has

been developed by Adams, Balas, and Zawack in the framework of the

Shifting Bottleneck Procedure (SBP) [Adams 88]. Rather than reoptimizing

entire resources, a micro-opportunistic version of this procedure would only

reoptimize those operations that had already been scheduled on these

resources.

• Undoing Decisions that are not Provably Wrong: In the case of the job

shop CSP, partial solutions that are not detected as deadends by the

consistency enforcing mechanism might still be worth abandoning simply

because they do not appear promising enough. This could be the case if a

search state is reached where contention for a resource is above some

threshold level over a long time interval. Rather than wasting time exploring

a portion of the search space that is unlikely to contain many solutions, the

system might decide to abandon the exploration of that portion of the search

space. If the procedure keeps track of search states abandoned in this

fashion, search can still be complete. Alternatively, the procedure could

decide to forget altogether about these states, hoping that other branches in

the search tree are rich enough in solutions.

• Repair Heuristics: Deadend recovery schemes such as chronological

backtracking, backjumping [Gaschnig 79, Dechter 89b] or more

sophisticated forms of dependency-directed backtracking [Stallman 77] can

waste a lot of time in trial-and-error mode attempting to undo the smallest

possible number of decisions in order to recover from a deadend. As

N. SADEH

152 SUMMARY AND CONCLUDING REMARKS

mentioned above, it may be more efficient to use heuristics that sometimes

undo more decisions than really necessary. Rather than moving back along

the current search branch and then down an alternative branch in the search

tree, an even more radical approach consists in directly patching the current

partial schedule. Several repair heuristics to patch inconsistent schedules are

described in [Ow 88b] that could readily be combined with a micro-

opportunistic scheduler. The simplest of these heuristics is a right-shifting

heuristic, which simply pushes conflicting operations forward in time until

operations no longer have conflicting resource requirements. In problems

with relaxable due dates and non constraining latest acceptable completion

dates, this simple repair procedure would ensure a polynomial time worst-

case complexity to the whole approach (whereas using backtracking the

worst-case time complexity will always be exponential). As pointed out at

the beginning of the dissertation, scheduling systems that dynamically relax

due dates by pushing conflicting operations forward in time also tend to

produce poorer schedules. An intermediate approach would be to combine a

backtrack recovery scheme with a right shifting mechanism. The system

would first attempt to recover from deadends using its backtrack mechanism

in order to preserve schedule quality. However, if search efficiency falls

below a threshold level, the system could resort to a right-shifting procedure

that efficiently patches the schedule. Clearly this approach is only applicable

to problems with relaxable due dates. Scheduling problems with operations

that need to be performed within non-relaxable time windows will always

have an exponential worst-case complexity. Finally, notice that, while right-

shifting is always guaranteed to terminate in polynomial time, more complex

repair heuristics may not share that property. Some of these heuristics

actually require very careful implementations to ensure that they do not loop

forever. Nevertheless, the development of new repair heuristics appears a

worthy endeavor, especially because they can also help patch the schedule as

it gets invalidated by unexpected events (see also next point).

• Progressively Lowering the Accuracy of the Procedure: Real life

scheduling problems are often fraught with contingencies. Raw materials

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

FUTURE RESEARCH 153

arrive late, machines break down, operation durations vary, machinists call

in sick, etc. Often within hours, schedules get invalidated by unexpected

events. Under such conditions, the need for building crisp schedules over

long term horizons seems questionable. While it certainly makes sense to

ensure that capacity constraints are precisely met over the next few hours or

the next few days, the same amount of accuracy is not necessarily justified

further along in the future. Large savings in computational time could

possibly be achieved by building a scheduling system whose level of

accuracy progressively decreases in time. In such a system, backtracking

would only take place for constraints that are violated beyond the local level

of accuracy. The system would still have to ensure that the schedule appears

feasible from a global perspective (i.e. that it does not violate global capacity

constraints) even if it contains some local inconsistencies. Kerr and Walker

have reported initial research in that direction using fuzzy arithmetic to

represent constraints that have to be satisfied up to a certain level of accuracy

[Kerr 89].

6.2.3. Refining the Scheduling Model

Additional research needs to be carried out in order to enable the micro-opportunistic

procedure to deal with sequence-dependent setups, machines with non-unary capacities,

and more complex types of process routings (e.g. more complex temporal relations

between operations or alternative process routings).

6.2.4. Adding Reactive Capabilities

Future work on MICRO-BOSS is also expected to include the addition of a reactive

component that will enable the system to revise the current schedule in the presence of

unexpected events rather than having to rebuild a new schedule from scratch. Rather than

relying on a predefined set of repair heuristics, our research will attempt to come up with

reactive scheduling strategies that are dynamically formulated according to the time

available to patch the schedule and the amount of disruption in the schedule. This work

will be performed within a decentralized setting in which MICRO-BOSS interacts with

several dispatch modules. The dispatch modules are each responsible for the execution of

the schedule on a group of machines. These modules attempt to contain disruptions

N. SADEH

154 SUMMARY AND CONCLUDING REMARKS

locally based on a set of simple heuristics, such as heuristics that switch the order of two

jobs on a machine or switch jobs from one machine to another similar machine. When a

dispatch module can no longer contain disruptions without radically departing from the

original schedule, it will call upon the reactive component of MICRO-BOSS to perform

some global reoptimization.

6.2.5. Infusing Parallelism

Research on parallel implementations of the micro-opportunistic approach to job shop
62scheduling has already begun [Sycara 91]. A first distributed scheduling system was

built in which several micro-opportunistic scheduling agents are each responsible for

scheduling different groups of jobs which may all require a small group of shared

resources. Monitoring agents ensure that no two agents reserve the same resource at the

same time, and broadcast each valid resource reservation to all agents that could require

the reserved resource/time interval. Scheduling agents account for each others’ resource

requirements and coordinate their scheduling activities by regularly communicating their

aggregate demand profiles to the monitoring agents. These profiles are further aggregated

by the monitoring agents to measure system-wide resource contention, and the resulting

system-wide aggregate demand profiles are communicated back to the agents. Based on

these system-wide aggregate demand profiles, each agent focuses its local scheduling

effort on globally critical decision points (variable ordering). The system-wide profiles

also provide predictive measures of the impact of an agent’s local scheduling decisions

on the ability of other agents to build good schedules (value ordering).

Fine-grained parallel implementations of the procedures that build demand profiles may

be worth investigating as well.

62This work was performed jointly with Katia Sycara, Steve Roth, and Mark Fox.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

155

Appendix A

Counting the Number of Survivable Schedules

This appendix describes a dynamic programming procedure that allows to efficiently

count the number of survivable job schedules (or more generally the number of

survivable solutions to the relaxation defined in Chapter 3 for the FSS value ordering

heuristic) that are compatible with the assignment of a reservation ρ to the current critical
l loperation O . This number was referred to as compsurv (ρ) in Chapter 3. However,i i

lbecause it only depends on the start time t allocated to O in reservation ρ, it will now bei
lwritten compsurv (t). The procedure presented here is a variation of a similar methodi

developed by Dechter and Pearl for the ABT value ordering heuristic [Dechter 88] (see

also [Pearl 88]). While a direct generalization of Dechter and Pearl’s procedure would
2have an O(ν k) complexity (where ν is the number of operations in the relaxation usedl l

by the FSS value ordering heuristic, and k the maximum number of possible reservations

of an operation in that relaxation), the procedure described here takes advantage of the

linearity of precedence constraints to reduce this complexity to O(ν k).l

Figure A-1 represents a prototypical tree-like process routing, which has been

reorganized with the current critical operation as the root of the tree. The arrows

represent precedence constraints between operations in the process routing. The children
lof the critical operation O in the tree are those operations that are directly connected toi

lO by a precedence constraint, the grandchildren the operations directly connected toi

these operations by precedence constraints, etc.

All the computations presented in this appendix refer to a single search state, in which

consistency checking has already been performed. The notations are those used in

Chapter 3. A few extra notations need to be defined:
l l l• surv (t)= surv (ρ), where G is the set of remaining reservations of O∑p ρ ∈ G p p

lwith st = t;p

l l l• α : the direct children of O that are after O in the process routing;p p p

N. SADEH

156 COUNTING THE NUMBER OF SURVIVABLE SCHEDULES

O llll

iiii

O llll

jjjj O llll

kkkk
O llll

mmmm

β llll

iiii α llll

iiii

β llll

mmmm

β llll

jjjj
α llll

jjjj

Figure A-1: A tree-like process routing, organized with the current critical operation as
its root. Arrows represent precedence constraints.

l l l• β : the direct children of O that are before O in the process routing;p p p

• ∆: the time granularity of the problem. In Chapter 3, it was assumed that
∆=1 (i.e. that all start times and end times have to be integers). For the sake
of clarity, the formulas presented in this appendix account explicitly for ∆.

lIn tree-like process routings, each operation O is the unique link between otherwisep

disjoint sets of operations, that each correspond to one of its children. Each of these sets
lcontains exactly one child of operation O and defines a subproblem that only interactsp
lwith the other subproblems via operation O . Accordingly,p

l l l• For each O ∈ β , we define BEF (t) as the number of survivable solutionsj p p,j
lto the subproblem defined by operation O and its descendants that arej

l lcompatible with the assignment of st = t to O ;p p

l l l• For each O ∈ α , we define AFT (t) as the number of survivable solutionsk p i,k
lto the subproblem defined by operation O and its descendants that arek

l lcompatible with the assignment of st = t to O ;p p

lGiven that operation O is the only link between the subproblems defined by each one ofi

its children, we have:
l l lcompsurv (t)= BEF (t) × AFT (t)∏ ∏i i,j i,k

l l
j ∈ β k ∈ αi i

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

157

Notice that this formula also relies on an independence assumption made in Chapter 3:

the probability that a solution to the relaxation survives contention is assumed to be given

by the product of the probabilities that each one of the reservation assignments in that

solution survives contention.

lBEF (t) is obtained by adding all the subproblem solutions compatible with thei,j
l lprecedence constraint st + du ≤ t:j j

l l l lBEF (t)= [surv (τ) × BEF (τ) × AFT (τ)]∑ ∏ ∏i,j j j,p j,q
l l lτ ≤ t−du p ∈ β q ∈ αj j j

lSimilarly for AFT (t), we have:i,k

l l l lAFT (t)= [surv (τ) × BEF (τ) × AFT (τ)]∑ ∏ ∏i,k k k,s k,u
l l lτ ≥ t+du s ∈ β u ∈ αi k k

We can speed up the computation of this recurrence using partial sums:

l l l l l l l lBEF (t)= BEF (t−∆)+[surv (t−du) × BEF (t−du) × AFT (t−du)]∏ ∏i,j i,j j j j,p j j,q j
l l

p ∈ β q ∈ αj j

l l l l l l l lAFT (t)= AFT (t+∆)+ [surv (t+du) × BEF (t+du) × AFT (t+du)]∏ ∏i,k i,k k i k,s i k,u i
l l

s ∈ β u ∈ αk k

The recurrence is initialized with:
l lBEF (est −∆)=0j,p j

l lAFT (lst + ∆)=0k,s k

and uses the convention:

=1∏
∅

lIn order to compute compsurv (t) for all remaining start times of the critical operationi
l l lO , the system starts by computing all BEF (t) or all AFT (t) at the leaf operations in thei j,p j,p

tree depicted in Figure A-1. The procedure then moves up in the tree by combining at
l leach level the BEF (t) and AFT (t) computed at the previous level. At each operationj,p j,p

l l l lO in the tree, the procedure computes at most λ BEF (t) expressions if O is before O ,p j,p p j
l l lits parent operation, or λ AFT (t) expressions, if O is after O (where λ is the maximumj,p p j

number of possible start times of an operation). Each such computation involves 2

multiplications and 1 addition. Hence, if ν is the number of operations in the relaxationl

N. SADEH

158 COUNTING THE NUMBER OF SURVIVABLE SCHEDULES

lused by the FSS value ordering heuristic, computing all compsurv (t) can be done ini
l lO(ν λ) elementary computations. Computing surv (t)= surv (ρ) for all the possible∑p ρ ∈ G pl

start times of all the operations in the relaxation requires however O(ν k) steps where k isl
63the maximum number of reservations left to an operation . Hence the overall

complexity of the procedure is also O(ν k).l

63The real complexity is actually O(ν k du), where du is the duration of the longest operation in thel
relaxation. This duration is assumed to be bounded by a constant.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

159

References

[Abramson 89] B. Abramson and M. Yung.
Divide and Conquer under Global Constraints: A Solution to the N-

Queens Problem.
Journal of Parallel and Distributed Computing 6(3):649-662, June,

1989.

[Adams 88] J. Adams, E. Balas, and D. Zawack.
The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34(3):391-401, 1988.

[Allen 83] J.F.Allen.
Maintaining Knowledge about Temporal Intervals.
Communications of the ACM 26(11):832-843, 1983.

[Badie 90] C. Badie, G. Bel, E. Bensana, and G. Verfaillie.
Operations Research and Artificial Intelligence Cooperation to Solve

Scheduling Problems: the OPAL and OSCAR Systems.
Technical Report, Centre d’Etude et de Recherches de Toulouse,

Toulouse, France, 1990.
Presented at the First International Conference on Expert Planning

Systems held in Brighton, United Kingdom.

[Baker 74] K.R. Baker.
Introduction to Sequencing and Scheduling.
Wiley, 1974.

[Baker 90] Kenneth R. Baker and Gary D. Scudder.
Sequencing with Earliness and Tardiness Penalties: A Review.
Operations Research 38(1):22-36, January-February, 1990.

[Bitner 75] J.R. Bitner and E.M. Reingold.
Backtrack Programming Techniques.
Communications of the ACM 18(11):651-655, 1975.

[Burke 89] Peter Burke and Patrick Prosser.
A Distributed Asynchronous System for Predictive and Reactive

Scheduling.
Technical Report AISL-42, Department of Computer Science,

University of Strathclyde, 26 Richmond Street, Glasgow, GI IXH,
United Kingdom, October, 1989.

N. SADEH

160 REFERENCES

[Chow 68] C.K. Chow and C.N. Liu.
Approximating Discrete Probability Distributions with Dependence

Trees.
IEEE Transactions on Information Theory IT-14(3):462-467, 1968.

[Collinot 88] A. Collinot, C. Le Pape and G. Pinoteau.
SONIA: a Knowledge-based Scheduling System.
International Journal of Artificial Intelligence in Engineering

2(4):86-94, 1988.

[Collinot 90] A. Collinot and C. Le Pape.
Adapting the Behavior of a Job-Shop Scheduling System.
International Journal of Decision Support Systems , 1990.
To appear.

[Dauzere-Peres 90]
S. Dauzere-Peres and J.B. Lasserre.
A Modified Shifting Bottleneck Procedure for Job Shop Scheduling.
Technical Report LAAS 90106, Laboratoire d’Automatique et

d’Analyse des Systemes, 7, Av. du Colonel Roche, 31077
Toulouse Cedex, France, 1990.

[Davis 87] Ernest Davis.
Constraint Propagation with Interval Labels.
Artificial Intelligence 32:281-331, 1987.

[Dechter 88] Rina Dechter and Judea Pearl.
Network-Based Heuristics for Constraint Satisfaction Problems.
Artificial Intelligence 34(1):1-38, 1988.

[Dechter 89a] Rina Dechter and Itay Meiri.
Experimental Evaluation of Preprocessing Techniques in Constraint

Satisfaction Problems.
In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, pages 271-277. 1989.

[Dechter 89b] Rina Dechter.
Enhancement Schemes for Constraint Processing: Backjumping,

Learning, and Cutset Decomposition.
Artificial Intelligence 41:273-312, 1989.

[Dechter 89c] Rina Dechter and Judea Pearl.
Tree Clustering for Constraint Networks.
Artificial Intelligence 38:353-365, 1989.
Research Note.

[Dechter 89d] Rina Dechter, Itay Meiri, and Judea Pearl.
Temporal Constraint Networks.
In Proceedings of the First International Conference on Principles of

Knowledge Representation and Reasoning. 1989.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

161

[Dechter 90] Rina Dechter, Avi Dechter, and Judea Pearl.
Optimization in Constraint Networks.
Influence Diagrams, Belief Nets, and Decision Analysis.
In R.M. Oliver & J.Q. Smith,
John Wiley and Suns, Ltd., West Sussex, England, 1990.

[Dechter 91] Rina Dechter.
Constraint Networks: A Survey.
Technical Report, Department of Information and Computer Science,

University of California at Irvine, Irvine, CA 92717, 1991.
To appear in the Encyclopedia of Artificial Intelligence.

[Dhar 90] Vasant Dhar and Nicky Ranganathan.
Integer Programming vs. Expert Systems: An Experimental

Comparison.
Communications of the ACM 33(3):323-336, 1990.

[Dincbas 88] M. Dincbas, H. Simonis, and P. Van Hentenryck.
Solving the Car-Sequencing Problem in Constraint Logic

Programming.
In Proceedings of the 1988 European Conference on Artificial

Intelligence, pages 290-295. 1988.

[Doyle 79] John Doyle.
A Truth Maintenance System.
Artificial Intelligence 12(3):231-272, 1979.

[Elleby 89] P. Elleby, H.E. Fargher and T.R. Addis.
A Constraint-based Scheduling System for VLSI Wafer Fabrication.
Knowledge Based Production Management Systems.
In J. Browne,
Elsevier Science Publishers B.V. (North Holland), 1989.

[Erman 80] Lee D. Erman, Frederick Hayes -Roth, Victor R. Lesser and D. Raj
Reddy.
The Hearsay-II Speech Understanding System: Integrating Knowledge

to Resolve Uncertainty.
Computing Surveys 12(2):213-253, June, 1980.

[Feldman 89] Ronen Feldman and Martin Charles Golumbic.
Constraint Satisfiability Algorithms for Interactive Student

Scheduling.
In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, pages 1010-1016. 1989.

[Fisher 76] M.L. Fisher.
A Dual Algorithm for the One Machine Sequencing Problem.
Mathematical Programming 11:229-251, 1976.

[Fox 83] Mark S. Fox.
Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Department of Computer Science, Carnegie-Mellon

University, 1983.

N. SADEH

162 REFERENCES

[Fox 86] Mark Fox.
Observations on the Role of Constraints In Problem Solving.
In Proceedings of the Annual Conference of the Canadian Society for

The Computational Studies of Intelligence, pages 172-187.
Montreal, Canada, 1986.

[Fox 87] R.E. Fox.
OPT: Leapfrogging the Japanese.
Just-in-time Manufacture.
In C.A. Voss,
IFS Ltd, Springer Verlag, 1987.

[Fox 89] Mark S. Fox, Norman Sadeh, and Can Baykan.
Constrained Heuristic Search.
In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, pages 309-315. 1989.

[French 82] S. French.
Sequencing and Scheduling: An Introduction to the Mathematics of the

Job-Shop.
Wiley, 1982.

[Freuder 82] E.C. Freuder.
A Sufficient Condition for Backtrack-free Search.
Journal of the ACM 29(1):24-32, 1982.

[Fry 87] Timothy Fry, G. Keong Leong, and Terry R. Rakes.
Single Machine Scheduling: A Comparison of Two Solution

Procedures.
OMEGA International Journal of Management Science 15(4):277-282,

1987.

[Fukumori 80] K. Fukumori.
Fundamental Scheme for Train Scheduling.
Technical Report MIT AI Memo No. 596, Massachusetts Institute of

Technology, Cambridge, MA, 1980.

[Garey 79] M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of

NP-Completeness.
Freeman and Co., 1979.

[Garey 88] Michael R. Garey, Robert E. Tarjan, and Gordon T. Wilfgong.
One-Processor Scheduling with Symmetric Earliness and Tardiness

Penalties.
Mathematics of Operations Research 13(2):330-348, May, 1988.

[Gaschnig 79] John Gaschnig.
Performance Measurement and Analysis of Certain Search

Algorithms.
Technical Report CMU-CS-79-124, Computer Science Department,

Carnegie Mellon University, Pittsburgh, PA 15213, 1979.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

163

[Ginsberg 90] Matthew L. Ginsberg, Michael Frank, Michael P. Halpin, and Mark
C. Torrance.
Search Lessons Learned from Crossword Puzzle.
In Proceedings of the Eighth National Conference on Artificial

Intelligence, pages 210-215. 1990.

[Goldratt 80] Eliyahu M. Goldratt.
Optimized Production Timetable: Beyond MRP: Something Better is

finally Here.
October, 1980
Speech to APICS National Conference.

[Goldratt 86] E. M. Goldratt and J. Cox.
The Goal: A Process of Ongoing Improvement, Revised Edition.
North River Press, Inc, 1986.

[Goldstein 75] Ira Goldstein.
Bargaining Between Goals.
In Proceedings of the Fourthth International Conference on Artificial

Intelligence, pages 175-180. 1975.

[Golomb 65] Solomon W. Golomb and Leonard D. Baumert.
Backtrack Programming.
Journal of the Association for Computing Machinery 12(4):516-524,

1965.

[Graves 81] Graves, S.C.
A Review of Production Scheduling.
Operations Research 29(4):646-675, July-August, 1981.

[Haralick 80] Robert M. Haralick and Gordon L. Elliott.
Increasing Tree Search Efficiency for Constraint Satisfaction

Problems.
Artificial Intelligence 14(3):263-313, 1980.

[Hax 84] Arnoldo C. Hax and Dan Candea.
Production and Inventory Management.
Prentice-Hall, 1984.

[HayesRoth 79] Barbara Hayes-Roth and Frederick Hayes-Roth.
A Cognitive Model of Planning.
Cognitive Science 3:275-310, 1979.

[Jacobs 84] F. Robert Jacobs.
OPT Uncovered: Many Production Planning And Scheduling

Concepts Can Be Applied With Or Without The Software.
Industrial Engineering 16(10):32-41, October, 1984.

[Johnson 74] L.A. Johnson and D.C. Montgomery.
Operations Research in Production Planning, Scheduling, and

Inventory Control.
Wiley, 1974.

N. SADEH

164 REFERENCES

[Johnston 90] Johnston, M.D.
SPIKE: AI Scheduling for NASA’s Hubble Space Telescope.
In Proceedings of the Sixth IEEE Conference on AI Applications,

Santa Barbara, California, pages 184-190. 1990.

[Keng 89] Naiping Keng and David Y.Y. Yun.
A Planning/Scheduling Methodology for the Constrained Resource

Problem.
In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, pages 998-1003. 1989.

[Kerr 89] Kerr R.M. and Walker R.N.
A Job Shop Scheduling System Based on Fuzzy Arithmetic.
In Proceedings of the Third International Conference on Expert

Systems and the Leading Edge in Production and Operations
Management, pages 433-450. 1989.

[Knoblock 91] Craig A. Knoblock.
Automatically Generating Abstractions for Problem Solving.
PhD thesis, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213, 1991.

[Kraitchick 42] M. Kraitchick.
Mathematical Recreations.
Norton, 1942.

[Lawler 82] E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.
Recent Developments in Deterministic Sequencing and Scheduling: A

Survey.
Deterministic and Stochastic Scheduling.
In M.A.H. Dempster, J.K. Lenstra, and A.H.G. Rinnooy Kan,
Reidel, 1982.

[Lawrence 84] Kenneth D. Lawrence and Stelios H. Zanakis.
Production Planning and Scheduling: Mathematical Programming

Applications.
Industrial Engineering and Management Press, Institute of Industrial

Engineers, Norcross, GA, 1984.

[LePape 87] Claude Le Pape and Stephen F. Smith.
Management of Temporal Constraints for Factory Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1987.
also appeared in Proc. Working Conference on Temporal Aspects in

Information Systems, Sponsored by AFCET and IFIP Technical
Committee TC8, North Holland Publishers, Paris, France, May
1987.

[LePape 88] Claude Le Pape.
Des Systemes d’Ordonnancement Flexibles et Opportunistes.
PhD thesis, Universite de Paris-Sud, Centre d’Orsay, 1988.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

165

[Lowerre 76] B.T. Lowerre.
The HARPY Speech Recognition System.
PhD thesis, Department of Computer Science, Carnegie-Mellon

University, 1976.

[Mackworth 77] A.K. Mackworth.
Consistency in Networks of Relations.
Artificial Intelligence 8(1):99-118, 1977.

[Mackworth 85] A.K. Mackworth and E.C. Freuder.
The Complexity of some Polynomial Network Consistency

Algorithms for Constraint Satisfaction Problems.
Artificial Intelligence 25(1):65-74, 1985.

[McGregor 79] J.J. McGregor.
Relational Consistency Algorithms and their Applications in Finding

Subgraph and Graph Isomorphisms.
Information Sciences 19(3):229-250, 1979.

[Michalski 83] Ryszard Michalski, Jaime G. Carbonell, and Tom M. Mitchell.
Machine Learning: An Artificial Intelligence Approach.
Tioga, Palo Alto, California, 1983.

[Minton 90] S. Minton, M.D. Johnston, A.B. Philips, P. Laird.
Solving Large-Scale Constraint Satisfaction and Scheduling Problems

Using a Heuristic Repair Method.
In Proceedings of the Eighth National Conference on Artificial

Intelligence, pages 17-24. 1990.

[Montanari 71] Ugo Montanari.
Networks of Constraints: Fundamental Properties and Applications to

Picture Processing.
Technical Report, Department of Computer Science, Carnegie Mellon

University, Pittsburgh, PA 15213, 1971.
Also appears in Information Science, 1974, vol. 7,pp. 95-132.

[Morton 88] T.E. Morton, S.R. Lawrence, S. Rajagopolan, S Kekre.
SCHED-STAR: A Price-Based Shop Scheduling Module.
Journal of Manufacturing and Operations Management :131-181,

1988.

[Muscettola 87] Nicola Muscettola, and Stephen Smith.
A Probabilistic Framework for Resource-Constrained Muti-Agent

Planning.
In Proceedings of the Tenth International Conference on Artificial

Intelligence, pages 1063-1066. 1987.

[Muscettola 89] N. Muscettola, S. F. Smith, G. Amiri, and D. Pathak.
Generating Space Telescope Observation Schedules.
Technical Report, The Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1989.

N. SADEH

166 REFERENCES

[Muth 63] J.F. Muth and G.L. Thompson.
Industrial Scheduling.
Prentice-Hall, 1963.

[Nadel 86a] B.A. Nadel.
The General Consistent Labeling (or Constraint Satisfaction)

Problem.
Technical Report DCS-TR-170, Department of Computer Science,

Laboratory for Computer Research, Rutgers University, New
Brunswick, NJ 08903, 1986.

[Nadel 86b] B.A. Nadel.
Three Constraint Satisfaction Algorithms and Their Complexities:

Search-Order Dependent and Effectively Instance-specific Results.
Technical Report DCS-TR-171, Department of Computer Science,

Laboratory for Computer Research, Rutgers University, New
Brunswick, NJ 08903, 1986.

[Nadel 86c] B.A. Nadel.
Theory-based Search-order Selection for Constraint Satisfaction

Problems.
Technical Report DCS-TR-183, Department of Computer Science,

Laboratory for Computer Research, Rutgers University, New
Brunswick, NJ 08903, 1986.

[Nadel 88] Bernard Nadel.
Tree Search and Arc Consistency in Constraint Satisfaction

Algorithms.
Search in Articial Intelligence.
In L. Kanal and V. Kumar,
Springer-Verlag, 1988.

[Nemhauser 88] G.L. Nemhauser and L.A. Wolsey.
Integer and Combinatorial Optimization.
Wiley, 1988.

[Nudel 83] Bernard Nudel.
Consistent-Labeling Problems and their Algorithms: Expected-

Complexities and Theory-Based Heuristics.
Artificial Intelligence 21:135-178, 1983.

[Ow 85] Peng Si Ow.
Focused Scheduling in Proportionate Flowshops.
Management Science 31(7):852-869, 1985.

[Ow 87] Peng Si Ow and Stephen F. Smith.
Two Design Principles for Knowledge-based Systems.
Decision Sciences 18(3):430-447, 1987.

[Ow 88a] Peng Si Ow and Stephen F. Smith.
Viewing Scheduling as an Opportunistic Problem-Solving Process.
Annals of Operations Research 12:85-108, 1988.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

167

[Ow 88b] P.S. Ow, S.F. Smith, and A. Thiriez.
Reactive Plan Revision.
In Proceedings of the Seventh National Conference on Artificial

Intelligence, pages 77-82. 1988.

[Ow 89] Peng Si Ow and Thomas Morton.
The Single Machine Early/Tardy Problem.
Management Science 35(2):177-191, 1989.

[Panwalkar 77] S.S. Panwalkar and Wafik Iskander.
A Survey of Scheduling Rules.
Operations Research 25(1):45-61, January-February, 1977.

[Papadimitriou 82]
C.H. Papadimitriou and K. Stieglitz.
Combinatorial Optimization: Algorithms and Complexity.
Prentice-Hall, 1982.

[Pearl 84] Judea Pearl.
Heuristics: Intelligent Search Strategies for Computer Problem

Solving.
Addison-Wesley, 1984.

[Pearl 88] Judea Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference.
Morgan Kaufmann, 1988.

[Peterson 85] James L. Peterson and Abraham Silberschatz.
Operating System Concepts.
Addison Wesley, 1985.

[Prosser 89] Patrick Prosser.
A Reactive Scheduling Agent.
In Proceedings of the Eleventh International Joint Conference on

Artificial Intelligence, pages 1004-1009. 1989.

[Purdom 83] Paul W. Purdom, Jr.
Search Rearrangement Backtracking and Polynomial Average Time.
Artificial Intelligence 21:117-133, 1983.

[Rinnooy Kan 76] A.H.G. Rinnooy Kan.
Machine Scheduling Problems: Classification, complexity, and

computations.
PhD thesis, University of Amsterdam, 1976.

[Rodammer 88] Frederick A. Rodammer, and K. Preston White.
A Recent Survey of Production Scheduling.
IEEE Transactions on Systems, Man, and Cybernetics

SMC-18(6):841-851, 1988.

[Sacerdoti 74] E.D. Sacerdoti.
Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence 5(2):111-135, 1974.

N. SADEH

168 REFERENCES

[Sadeh 88] N. Sadeh and M.S. Fox.
Preference Propagation in Temporal/Capacity Constraint Graphs.
Technical Report CMU-CS-88-193, Computer Science Department,

Carnegie Mellon University, Pittsburgh, PA 15213, 1988.
Also appears as Robotics Institute technical report CMU-RI-TR-89-2.

[Sadeh 89a] N. Sadeh and M.S. Fox.
Focus of Attention in an Activity-based Scheduler.
In Proceedings of the NASA Conference on Space Telerobotics.

January, 1989.

[Sadeh 89b] N. Sadeh and M.S. Fox.
CORTES: An Exploration into Micro-Opportunistic Job-Shop

Scheduling.
In Workshop on Manufacturing Production Scheduling. IJCAI89 -

Detroit, 1989.

[Sadeh 89c] Norman Sadeh.
Look-ahead Techniques for Activity-based Job-shop Scheduling.
1989
Thesis Proposal.

[Sadeh 90] Norman Sadeh, and Mark S. Fox.
Variable and Value Ordering Heuristics for Activity-based Job-shop

Scheduling.
In Proceedings of the Fourth International Conference on Expert

Systems in Production and Operations Management, Hilton Head
Island, S.C., pages 134-144. 1990.

[Serafini 88] P. Serafini, W. Ukovich, H. Kirchner, F. Giardina, and F. Tiozzo.
Job-shop scheduling: a case study.
Operations Research Models in FMS.
In F. Archetti, M. Lucertini, and P. Serafini,
Springer, Vienna, 1988.

[Shaw 90] M.J. Shaw, S.C. Park, and N. Raman.
Intelligent Scheduling with Machine Learning Capabilities: The

Induction of Scheduling Knowledge.
Technical Report, Beckman Institute for Advanced Science and

Technology, University of Illinois at Urbana-Champaign, Urbana,
IL 61801, February, 1990.

[Silver 85] Edward E. Silver and Rein Peterson.
Decision Systems for Inventory Management and Production

Planning.
Wiley, 1985.

[Smith 83] Stephen F. Smith.
Exploiting Temporal Knowledge to Organize Constraints.
Technical Report, Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213, 1983.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

169

[Smith 86a] Stephen F. Smith, Peng Si Ow, Claude Lepape, Bruce McLaren,
Nicola Muscettola.
Integrating Multiple Scheduling Perspectives to Generate Detailed

Production Plans.
In Proceedings 1986 SME Conference on AI in Manufacturing, pages

123-137. 1986.

[Smith 86b] S. Smith, M. Fox, and P.S. Ow.
Constructing and Maintaining Detailed Production Plans:

Investigations into the Development of Knowledge-Based Factory
Scheduling Systems.

AI Magazine 7(4):45-61, Fall, 1986.

[Srinivasan 71] V. Srinivasan.
A Hybrid Algorithm for the One Machine Sequencing Problem to

Minimize Total Tardiness.
Naval Res. Logist. Quart. 18:317-327, 1971.

[Stallman 77] R. Stallman and G. Sussman.
Forward Reasoning and Dependency-directed Backtracking in a

Sysem for Computer-aided Circuit Analysis.
Artificial Intelligence 9:135-196, 1977.

[Stefik 81a] Mark Stefik.
Planning and Meta-Planning (MOLGEN: Part 2).
Artificial Intelligence 16():141-169, 1981.

[Stefik 81b] Mark Stefik.
Planning with Constraints (MOLGEN: Part 1).
Artificial Intelligence 16():111-140, 1981.

[Stone 86] Harold S. Stone and Paolo Sipala.
The average complexity of depth-first search with backtracking and

cutoff.
IBM Journal of Research and Development 30(3):242-258, 1986.

[Sussman 80] G.J. Sussman and G.L. Steele Jr.
CONSTRAINTS: A language for expressing almost-hierarchical

descriptions.
Artificial Intelligence 14(1):1-39, 1980.

[Sycara 91] Katia Sycara, Stephen Roth, Norman Sadeh, and Mark S. Fox.
Coordinating Resource Allocation in Distributed Factory Scheduling:

A Constrained Heuristic Search Approach.
IEEE EXPERT 6(1):29-40, February, 1991.

[Tarjan 83a] Robert Endre Tarjan.
Shortest Paths.
In CBMS-NSF Regional Conference Series in Applied Mathematics.

Number 44: Data Structures and Network Algorithms, chapter 7.
Society for Industrial and Applied Mathematics, 1983.

N. SADEH

170 REFERENCES

[Tarjan 83b] Robert Endre Tarjan.
Minimum Spanning Trees.
In CBMS-NSF Regional Conference Series in Applied Mathematics.

Number 44: Data Structures and Network Algorithms, chapter 6.
Society for Industrial and Applied Mathematics, 1983.

[Vepsalainen 87] Ari P.J. Vepsalainen and Thomas E. Morton.
Priority Rules for Job Shops with Weighted Tardiness Costs.
Management Science 33(8):1035-1047, 1987.

[Voss 87] C.A. Voss.
Just-in-time Manufacture.
IFS Ltd, Springer Verlag, 1987.

[Walker 60] R.J. Walker.
An Enumerative Technique for a Class of Combinatorial Problems.
Combinatorial Analysis, Proc. Sympos. Appl. Math.
In R. Bellman and M. Hall,
American Mathematical Society, Rhode Island, 1960, pages 91-94,

Chapter 7.

[Waltz 75] D.L. Waltz.
Understanding Line Drawings of Scenes with Shadows.
The Psychology of Computer Vision.
In P.H. Winston,
McGraw-Hill, New York, 1975.

[Yaglom 64] A.M. Yaglom and I.M. Yaglom.
Challenging Mathematical Problems with Elementary Solutions.
Holden-Day, San Francisco, 1964.

[Zabih 88] Ramin Zabih and David McAllester.
A Rearrangement Search Strategy for Determining Propositional

Satisfiability.
In Proceedings of the Seventh National Conference on Artificial

Intelligence, pages 155-160. 1988.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

I

Table of Contents

1. Introduction 1
1.1. Overview 1
1.2. The Job Shop Scheduling Problem 4
1.3. Related Work 7

1.3.1. The State of the Art in Job Shop Scheduling 8
1.3.2. Relevant Work in CSP/COP 11

1.4. Summary of Contributions 16
1.5. Thesis Outline 17

2. The Micro-opportunistic Search Procedure 19
2.1. Overview 19
2.2. The Search Procedure 22
2.3. Enforcing Consistency 23

3. The Job Shop Constraint Satisfaction Problem 27
3.1. Introduction 27
3.2. Problem Definition 29
3.3. Shortcomings of Popular Variable Ordering Heuristics 32
3.4. Shortcomings of Popular Value Ordering Heuristics 38
3.5. New Variable and Value Ordering Heuristics 43

3.5.1. Underlying Assumptions 43
3.5.2. A Probabilistic Model of the Search Space 44
3.5.3. A Variable Ordering Heuristic Based on Measures of Resource 49

Contention
3.5.4. A Value Ordering Heuristic Avoiding Resource Contention 51

3.5.4.1. Estimating the Probability that a Reservation Survives 52
Contention

3.5.4.2. Estimating the Probability that a Job Schedule Survives 55
Contention

3.5.4.3. Further Refinement 58
3.6. Overall Complexity 59
3.7. Empirical Evaluation 59

3.7.1. Design of the Test Data 60
3.7.2. Comparison Against Other Heuristics 61
3.7.3. Varying the Granularity of the Approach 65

3.8. Summary and Conclusions 66
4. Factory Scheduling: A Constrained Optimization Problem 71

N. SADEH

II TABLE OF CONTENTS

4.1. Introduction 71
4.2. Problem Definition 73
4.3. Look-ahead Analysis 80

4.3.1. Overview 80
4.3.1.1. General Considerations 80
4.3.1.2. Optimizing Critical Conflicts First 81
4.3.1.3. The Look-ahead Procedure 81

4.3.2. Step 1: Reservation Optimization Within a Job 82
4.3.3. Step 2: Building Biased Demand Profiles to Identify Highly 95

Contended Resource/Time Intervals
4.4. Operation Selection 102
4.5. Reservation Selection 104
4.6. A Small Example 109

5. Performance Evaluation of MICRO-BOSS 115
5.1. Design of the Test Data 115
5.2. Comparison Against Six Priority Dispatch Rules 119
5.3. Comparison Against A Macro-opportunistic Scheduler 126
5.4. Evaluating the Impact of the Biased Demand Profiles 133
5.5. Varying the Granularity of the Micro-opportunistic Approach 136
5.6. Sensitivity to Changes in the Cost Function 141

6. Summary and Concluding Remarks 145
6.1. Contributions 145
6.2. Future Research 149

6.2.1. Dynamically Adapting the Search Procedure 149
6.2.2. Breaking Away from the Depth-first Backtrack Search 150

Paradigm
6.2.3. Refining the Scheduling Model 153
6.2.4. Adding Reactive Capabilities 153
6.2.5. Infusing Parallelism 154

Appendix A. Counting the Number of Survivable Schedules 155
References 159

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

III

List of Figures

Figure 1-1: A simple job shop problem with 4 jobs. Each node is 5
labeled by the operation that it represents, its duration,
and the resource that it requires.

Figure 2-1: A situation with an oversubscribed resource that can 26
easily be detected.

Figure 3-1: Examples of tree-like process routings. 29
Figure 3-2: A simple job shop problem with 4 jobs. Each node is 31

labeled by the operation that it represents and the
resource required by this operation.

Figure 3-3: The same job shop CSP after consistency labeling. 34
Start time labels are represented as intervals. For
instance, [0,6] represents all start times between time 0
and time 6, as allowed by the time granularity, namely
{0,1,2,3,4,5,6}.

Figure 3-4: A new resource R is added to the problem. R stands 365 1,5
for R or R . R stands for R or R .1 5 3,5 3 5

Figure 3-5: An MST relaxation of the scheduling problem. 41
Figure 3-6: Building R ’s aggregate demand profile in the initial 462

search state.
Figure 3-7: Aggregate demands in the initial search state for each 48

of the four resources.
Figure 3-8: ORR Heuristic: the most critical operation is the one 50

that relies most on the most contended resource/time
interval.

Figure 3-9: Survivability measures for the reservations of 54
3operations in job j , the job to which belongs O , the33

current critical operation.
3Figure 3-10: Value goodness for O expressed as the number of 573

compatible job schedules expected to survive resource
contention.

Figure 4-1: Two examples of in-tree process routings. 73
Figure 4-2: A simple job shop problem with 4 jobs. Each node is 77

labeled by the operation that it represents, its duration,
and the resource that it requires. The earliest
acceptable release date, due date, and latest acceptable
completion date of each job is provided in the table
along with marginal tardiness and inventory costs.

N. SADEH

IV LIST OF FIGURES

Figure 4-3: Three possible schedules for j . 781
Figure 4-4: Assessing the merits of alternative scheduling decisions 83

in the initial search state.
Figure 4-5: Assessing the merits of alternative scheduling decisions 85

1in a search state where O has been scheduled to start2
1at st =4.2

Figure 4-6: Assessing the merits of alternative scheduling decisions 87
1in a search state where O has been scheduled to start2

1 1 1at st =4 and O at st =15.2 5 5
Figure 4-7: Assessing the merits of alternative scheduling decisions 88

1in a search state where O has been scheduled to start2
1 1 1 1 1at st =4, O at st =15, and O at st =7.2 5 5 3 3

Figure 4-8: Assessing the merits of alternative scheduling decisions 89
3in job j , given a search state where O has been11

3scheduled to start at st =14.1
Figure 4-9: Simplified mincost functions that do not account for 91

the two disjoint intervals that make up the set of
1remaining possible start times of operation O .4

1 1Figure 4-10: Start time distribution σ (τ) for operation O in the 983 3
initial search state depicted in Figure 4-4.

Figure 4-11: Building R ’s aggregate demand profile in the initial 1002
search state.

Figure 4-12: Aggregate demands in the initial search state for each 101
of the five resources.

Figure 4-13: Operation selection in the initial search state. 103
Figure 4-14: An edited trace 110
Figure 4-15: The final schedule produced by the micro- 113

opportunistic scheduler.
Figure 5-1: Comparison of the cost of the schedules produced by 120

MICRO-BOSS and the WSPT, EDD, S/RPT and
WCOVERT dispatch rules under 8 different
scheduling conditions.

Figure 5-2: Weighted tardiness performance of MICRO-BOSS and 121
the WSPT, EDD, S/RPT and WCOVERT dispatch
rules under 8 different scheduling conditions.

Figure 5-3: Weighted flowtime performance of MICRO-BOSS and 121
the WSPT, EDD, S/RPT and WCOVERT dispatch
rules under 8 different scheduling conditions.

Figure 5-4: Weighted in-system time performance of MICRO- 122
BOSS and the WSPT, EDD, S/RPT and WCOVERT
dispatch rules under 8 different scheduling conditions.

Figure 5-5: Comparison of the cost of the schedules produced by 123
MICRO-BOSS and the LIN-ET and EXP-ET dispatch
rules under 8 different scheduling conditions.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

V

Figure 5-6: Weighted tardiness performance of MICRO-BOSS and 124
the LIN-ET and EXP-ET dispatch rules under 8
different scheduling conditions.

Figure 5-7: Weighted flowtime performance of MICRO-BOSS and 124
the LIN-ET and EXP-ET dispatch rules under 8
different scheduling conditions.

Figure 5-8: Weighted in-system time performance of MICRO- 125
BOSS and the LIN-ET and EXP-ET dispatch rules
under 8 different scheduling conditions.

Figure 5-9: Comparison of the cost of the schedules produced by 128
MICRO-BOSS and a macro-opportunistic scheduler
under 8 different scheduling conditions.

Figure 5-10: Weighted tardiness performance of MICRO-BOSS 129
and a macro-opportunistic scheduler under 8
different scheduling conditions.

Figure 5-11: Weighted flowtime performance of MICRO-BOSS 129
and a macro-opportunistic scheduler under 8
different scheduling conditions.

Figure 5-12: Weighted in-system time performance of MICRO- 130
BOSS and a macro-opportunistic scheduler under 8
different scheduling conditions.

Figure 5-13: Search efficiency of MICRO-BOSS and a macro- 131
opportunistic scheduler under 8 different scheduling
conditions.

Figure 5-14: Comparison of the cost of the schedules produced 133
with B=0 (unbiased version) and B=0.9 (biased
version) under eight different scheduling conditions.

Figure 5-15: Weighted tardiness performance with B=0 (unbiased 134
version) and B=0.9 (biased version) under eight
different scheduling conditions.

Figure 5-16: Weighted in-system time performance with B=0 134
(unbiased version) and B=0.9 (biased version) under
eight different scheduling conditions.

Figure 5-17: Comparison of the cost of the schedules produced by 137
MICRO-BOSS and two coarser opportunistic
schedulers under 8 different scheduling conditions.

Figure 5-18: Weighted tardiness performance of MICRO-BOSS 137
and two coarser opportunistic schedulers under 8
different scheduling conditions.

Figure 5-19: Weighted flowtime performance of MICRO-BOSS 138
and two coarser opportunistic schedulers under 8
different scheduling conditions.

Figure 5-20: Weighted in-system time performance of MICRO- 139
BOSS and two coarser opportunistic schedulers under
8 different scheduling conditions.

N. SADEH

VI LIST OF FIGURES

Figure 5-21: Weighted in-system time performance of MICRO- 140
BOSS and two coarser opportunistic schedulers under
8 different scheduling conditions.

Figure 5-22: Comparison of MICRO-BOSS and EXP-ET on 141
problems with r=1 (i.e. problems with low tardiness
costs).

Figure 5-23: Weighted tardiness performance of MICRO-BOSS 142
and EXP-ET on problems with r=1 (i.e. problems
with low tardiness costs).

Figure 5-24: Weighted flowtime performance of MICRO-BOSS 142
and EXP-ET on problems with r=1 (i.e. problems
with low tardiness costs).

Figure 5-25: Weighted in-system time performance of MICRO- 143
BOSS and EXP-ET on problems with r=1 (i.e.
problems with low tardiness costs).

Figure 5-26: Weighted tardiness performance of MICRO-BOSS on 144
80 problems with r=5 (i.e. high tardiness costs) and 80
problems with r=1 (i.e. low tardiness costs).

Figure 5-27: Weighted in-system time performance of MICRO- 144
BOSS on 80 problems with r=5 (i.e. high tardiness
costs) and 80 problems with r=1 (i.e. low tardiness
costs).

Figure A-1: A tree-like process routing, organized with the current 156
critical operation as its root. Arrows represent
precedence constraints.

LOOK-AHEAD TECHNIQUES FOR MICRO-OPPORTUNISTIC JOB SHOP SCHEDULING

VII

List of Tables

Table 3-1: Comparison of 5 heuristics over 6 sets of 10 job shop 64
problems. Standard deviations appear between
parentheses.

Table 3-2: Varying the granularity of the approach. Standard 65
deviations appear between parentheses.

Table 4-1: Reservation Selection. 109
Table 5-1: Parameter settings for each of the eight problem sets. 117

N. SADEH

